High-Dimensional Analysis for Generalized Nonlinear Regression: From Asymptotics to Algorithm Jian Li¹, Yong Liu^{2,*} and Weiping Wang¹ ¹ Institute of Information Engineering, Chinese Academy of Sciences ² Gaoling School of Artificial Intelligence, Renmin University of China

Backgrounds Related works: - Benign overfitting: Overparameterized models often achieve benign overfitting, interpolating the training data while still generalizing well. - Double descent phenomenon: The testing error characterizes a U-shaped performance curve in the under-parameterized regime, while it decreases again in the over-parameterized regime. • Motivation: Despite the extensive literature devoted to understanding the double descent phenomenon, there are still several open problems: 1) The lack of a general asymptotic analysis framework for generalized nonlinear regression models. 2) Existing asymptotic results often remain as self-consistency equations that are hard to estimate. 3) Benign overfitting can be caused by overparameterization, and subsampling may also achieve better performance from a dual view. © Contributions: – Generalized asymptotic analysis framework for nonlinear regression models. - Trainable nonlinear regression algorithm based on theoretical findings. - Interesting byproducts: the use of nonlinear feature mapping to reduce effective dimension and the potential benefits of subsampling for generalization. Preliminaries Assumptions • Linear Ridge Regression space). $\arg\min_{\eta\in\mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n \left(\eta^\top x - y_i \right)^2 + \lambda \|\eta\|_2^2 \right\}, \quad \text{with}$ mapping). $\hat{\eta} = (\widehat{\Sigma} + \lambda I)^{-1} \widehat{\Sigma} \eta_* + (\widehat{\Sigma} + \lambda I)^{-1} \frac{X^\top \varepsilon}{n}.$ where $\widehat{\Sigma} = \frac{1}{n} X^{\top} X \in \mathbb{R}^{d \times d}$ the covariance matrix.

• Generalized Nonlinear Regression Model

$$\underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{1}{n} \| \phi(X)\theta - y \|_{2}^{2} + \lambda \| \theta \|_{2}^{2} \right\}, \quad \text{with}$$
$$\hat{\theta} = (\widehat{\Sigma}_{\phi} + \lambda I)^{-1} \widehat{\Sigma}_{\phi} \theta_{*} + (\widehat{\Sigma}_{\phi} + \lambda n I)^{-1} \frac{\phi(X)^{\top} \varepsilon}{n},$$

where $\phi : \mathbb{R}^d \to \mathbb{R}^p$ is the feature mapping.

• Nonlinear Regression Model with Subsampling

$$\operatorname{argmin}_{\theta \in \mathbb{R}^p} \left\{ \frac{1}{m} \| S\phi(X)\theta - Sy\|_2^2 + \lambda \|\theta\|_2^2 \right\}, \quad \text{with}$$

 $\hat{\theta} = \left(\widehat{\Sigma}_{S\phi} + \lambda I\right)^{-1} \widehat{\Sigma}_{S\phi} \theta_* + \left(\widehat{\Sigma}_{S\phi} + \lambda I\right)^{-1} \frac{\phi(X)^\top S^\top S\varepsilon}{m},$

Assumption 1 (Existence of θ_* in the feature

Assumption 2 (Continuous and bounded feature

Assumption 3 (Covariance condition for nonlinear feature mapping). Suppose Σ_{ϕ} is invertible and bounded, and the eigenvalues of Σ_{ϕ} are positive and bounded. $\phi(X) = Z \Sigma_{\phi}^{1/2}$ where Z has i.i.d. entries with zero mean, and unit variance.

Assumption 4 (Orthogonal subsampling matrix). Suppose the rows of subsampling matrix is orthogonal, such that $SS^{\top} = I_m$. Meanwhile, $S^{\top}S$ converges to a deterministic matrix Σ_S .

Assumption 5 (Covariance condition for subsampled nonlinear models). The empirical covariance matrix of $\widehat{\Sigma}_{S\phi} = \frac{1}{m}\phi(X)^{\top}S^{\top}S\phi(X)$ converges to a deterministic covariance matrix $\Sigma_{S\phi} =$ $\Sigma_{\phi}^{1/2} Z^{\top} \Sigma_{S} Z \Sigma_{\phi}^{1/2}$. The spectral distribution $F_{\Sigma_{S\phi}}$ of $\Sigma_{S\phi}$ converges to a limit probability distribution μ supported on $[0, +\infty)$ and Σ is invertible and bounded in operator norm.

 \mathbb{E}_{ε}

 $||\mathbb{E}|$

Asymptotics Results

Theorem 1 (Asymptotic risk for ridge regression). Under Assumptions 2 - 5, the nonlinear ridge regression with subsampling estimator in (??) admits the following limiting variance and bias:

$$\begin{bmatrix} \left\| \hat{\theta} - \mathbb{E}_{\varepsilon}(\hat{\theta}) \right\|_{\Sigma_{S\phi}}^{2} \end{bmatrix} \sim \sigma^{2} \frac{\mathrm{df}_{2}(\kappa)}{m - \mathrm{df}_{2}(\kappa)},$$

$$\varepsilon(\hat{\theta}) - \theta_{*} \Big\|_{\Sigma_{S\phi}}^{2} \sim \frac{m\kappa^{2}\theta_{*}^{\top}(\Sigma_{S\phi} + \kappa I)^{-2}\Sigma_{S\phi}\theta_{*}}{m - \mathrm{df}_{2}(\kappa)}.$$

Corollary 1 (Under-parameterized regime). Under Assumptions 2 - 5, if $\lambda = 0$ and $\gamma < 1$, the nonlinear ridgeless regression with subsampling estimator admits:

$$\hat{\theta} - \mathbb{E}_{\varepsilon}(\hat{\theta}) \Big\|_{\Sigma_{S\phi}}^2 \Big] \sim \sigma^2 \frac{p}{m-p}, \quad \left\| \mathbb{E}_{\varepsilon}(\hat{\theta}) - \theta_* \right\|_{\Sigma_{S\phi}}^2 = 0.$$

Corollary 2 (Over-parameterized regime). Under Assumptions 2 - 5, if $\lambda = 0$ and $\gamma > 1$, with κ_0 defined by $df_1(\kappa_0) = m$ the nonlinear ridgeless regression with subsampling estimator admits:

$$\begin{bmatrix} \left\| \hat{\theta} - \mathbb{E}_{\varepsilon}(\hat{\theta}) \right\|_{\Sigma_{S\phi}}^{2} \end{bmatrix} \sim \sigma^{2} \frac{\mathrm{df}_{2}(\kappa_{0})}{m - \mathrm{df}_{2}(\kappa_{0})},$$

$$_{\varepsilon}(\hat{\theta}) - \theta_{*} \right\|_{\Sigma_{S\phi}}^{2} = \frac{m\kappa^{2}\theta_{*}^{\top}(\Sigma_{S\phi} + \kappa I)^{-2}\Sigma_{S\phi}\theta_{*}}{m - \mathrm{df}_{2}(\kappa_{0})}.$$

mension (RFRed)

are drawn uniformly from $[0, 2\pi]$.

 $\mathcal{L}(\theta; W) =$

Complexity. Using batch stochastic gradient method, we have $\nabla_{\theta} \mathcal{L} = \frac{1}{n} X_b^{\top} (X_b \theta - \tilde{y}_b)$ where $\{\widetilde{X}_b \in \mathbb{R}^{b \times p}, \widetilde{y}_b \in \mathbb{R}^b\}$ is a batch of $\{S\phi(X), Sy\}$ with the batch size b. We also use the batch data to approximate $df_2(\lambda)$ where X in (??) is replaced by X_b . The compute of $S\phi(X)$ consumes $\mathcal{O}(mnp + ndp)$. With T iterations, the update of θ takes $\mathcal{O}(pbT)$ time, the update of W consumes $\mathcal{O}(pb^2T)$, and the compute of $df_2(\lambda)$ requires $\int \mathcal{O}(\frac{p^2 nT}{n\alpha}).$

Experiments

★ 圈 斜 聋 旄 信息工程研究所

Algorithm: RFRed

Based on random Fourier features, we devise Random Feature Regression model with Effective Di-

$$\phi(x) = \sqrt{\frac{2}{p}}\cos(W^{\top}x + b),$$

where the frequency matrix $W = [w_1, \cdots, w_p] \in$ $\mathbb{R}^{d \times p}$ is trainable and initialized by a Gaussian distribution. The phase vectors $b = [b_1, \cdots, b_p] \in \mathbb{R}^p$

Motivated by the asymptotics results, we devise the following objective and optimize θ and W jointly.

$$= \frac{1}{n} \|S\phi(X)\theta - Sy\|_2^2 + \lambda \|\theta\|_2^2 + \beta \,\widehat{\mathrm{df}}_2(\lambda),$$