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— Benign overfitting: Overparameterized models often achieve benign overfitting, interpolating the train-
ing data while still generalizing well.

— Double descent phenomenon: The testing error characterizes a U-shaped performance curve in the
under-parameterized regime, while it decreases again in the over-parameterized regime.

©® Motivation: Despite the extensive literature devoted to understanding the double descent phenomenon,
there are still several open problems:

1) The lack of a general asymptotic analysis framework for generalized nonlinear regression models.

2) Existing asymptotic results often remain as self-consistency equations that are hard to estimate.

3) Benign overfitting can be caused by overparameterization, and subsampling may also achieve better

performance from a dual view.

Contributions:

Preliminaries

— Generalized asymptotic analysis framework for nonlinear regression models.

— Trainable nonlinear regression algorithm based on theoretical findings.

— Interesting byproducts: the use of nonlinear feature mapping to reduce effective dimension and the
potential benefits of subsampling for generalization.
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e Generalized Nonlinear Regression Model
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where ¢ : RY — RP? is the feature mapping.

e Nonlinear Regression Model with Subsampling
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Assumptions

Assumption 1 (Existence of 6, in the feature
space).

Assumption 2 (Continuous and bounded feature
mapping).

Assumption 3 (Covariance condition for nonlin-
ear feature mapping). Supoose ¥, is invertible and
bounded, and the eigenvalues of Xy are positive and

bounded. ¢(X) = ZE;/Z where Z has i.1.d. entries
with zero mean, and unit variance.

Assumption 4 (Orthogonal subsampling matrix).
Suppose the rows of subsampling matrixz is orthog-

onal, such that SS' = I,,. Meanwhile, S'S con-
verges to a deterministic matrix Xg.

Assumption 5 (Covariance condition for sub-
sampled nonlinear models). The empirical covari-
ance matrix of §5¢ = Lo(X)'S"TSP(X) con-
verges to a deterministic covariance matric 2gy =
Z;/QZTZSZZ;/Q. The spectral distribution Fyxg,
of 2gs converges to a limit probability distribution

u supported on |0,+00) and ¥ is invertible and
bounded in operator norm.

Asymptotics Resul

Theorem 1 (Asymptotic risk for ridge regression).
Under Assumptions 2 - 5, the nonlinear ridge re-
gression with subsampling estimator in (77) admits
the following limiting variance and bias:
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Corollary 1 (Under-parameterized regime). Un-
der Assumptions 2 - 5, if A = 0 and v < 1, the
nonlinear ridgeless regression with subsampling es-

timator admaits:
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Corollary 2 (Over-parameterized regime). Under
Assumptions 2 - 5, if A = 0 and v > 1, with kg
defined by dfi(kg) = m the nonlinear ridgeless re-
gression with subsampling estimator admats:
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Algorithm: RFRec

Based on random Fourier features, we devise Ran-

dom Feature Regression model with Effective Di-
mension (RFRed)

o(x) = \/gCOS(WTa: +b),

where the frequency matrix W = |wq,--- ,w,] €
RI*P is trainable and initialized by a Gaussian dis-
tribution. The phase vectors b = [by,--- ,b,] € RP

are drawn uniformly from [0, 27].
Motivated by the asymptotics results, we devise the
following objective and optimize € and W jointly.

1 ~
L(6; W) = — [S6(X)0 — Syl + M0lI3 + 8 da(3),

Complexity. Using batch stochastic gradient

method, we have VoLl = %)?,j()?be — 1p) Where
X, € RP 3, € R®} is a batch of {S¢(X), Sy}
with the batch size b. We also use the batch

AN

data to approximate dfy(\) where X in (77) is re-

placed by X;. The compute of S¢(X) consumes
O(mnp + ndp). With T iterations, the update
of 0 takes O(pbT) time, the update of W con-

sumes O(pb*T), and the compute of dAfg()\) requires

Es¢

Experiments
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