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Backgrounds
� Related works:

– Benign overfitting: Overparameterized models often achieve benign overfitting, interpolating the train-
ing data while still generalizing well.

– Double descent phenomenon: The testing error characterizes a U-shaped performance curve in the
under-parameterized regime, while it decreases again in the over-parameterized regime.

? Motivation: Despite the extensive literature devoted to understanding the double descent phenomenon,
there are still several open problems:

1) The lack of a general asymptotic analysis framework for generalized nonlinear regression models.

2) Existing asymptotic results often remain as self-consistency equations that are hard to estimate.

3) Benign overfitting can be caused by overparameterization, and subsampling may also achieve better
performance from a dual view.

◎ Contributions:

– Generalized asymptotic analysis framework for nonlinear regression models.

– Trainable nonlinear regression algorithm based on theoretical findings.

– Interesting byproducts: the use of nonlinear feature mapping to reduce effective dimension and the
potential benefits of subsampling for generalization.

Preliminaries
• Linear Ridge Regression

argmin
η∈Rd

{
1

n

n∑
i=1

(
η⊤x− yi

)2
+ λ∥η∥22

}
, with

η̂ = (Σ̂ + λI)−1Σ̂η∗ + (Σ̂ + λI)−1X
⊤ε

n
.

where Σ̂ = 1
nX

⊤X ∈ Rd×d the covariance matrix.

• Generalized Nonlinear Regression Model

argmin
θ∈Rp

{
1

n
∥ϕ(X)θ − y∥22 + λ∥θ∥22

}
, with

θ̂ = (Σ̂ϕ + λI)−1Σ̂ϕθ∗ + (Σ̂ϕ + λnI)−1ϕ(X)⊤ε

n
,

where ϕ : Rd → Rp is the feature mapping.

• Nonlinear Regression Model with Subsampling

argmin
θ∈Rp

{
1

m
∥Sϕ(X)θ − Sy∥22 + λ∥θ∥22

}
, with

θ̂ =
(
Σ̂Sϕ + λI

)−1

Σ̂Sϕθ∗ +
(
Σ̂Sϕ + λI

)−1
ϕ(X)⊤S⊤Sε

m ,

Assumptions
Assumption 1 (Existence of θ∗ in the feature
space).

Assumption 2 (Continuous and bounded feature
mapping).

Assumption 3 (Covariance condition for nonlin-
ear feature mapping). Supoose Σϕ is invertible and
bounded, and the eigenvalues of Σϕ are positive and
bounded. ϕ(X) = ZΣ

1/2
ϕ where Z has i.i.d. entries

with zero mean, and unit variance.

Assumption 4 (Orthogonal subsampling matrix).
Suppose the rows of subsampling matrix is orthog-
onal, such that SS⊤ = Im. Meanwhile, S⊤S con-
verges to a deterministic matrix ΣS.

Assumption 5 (Covariance condition for sub-
sampled nonlinear models). The empirical covari-
ance matrix of Σ̂Sϕ = 1

mϕ(X)⊤S⊤Sϕ(X) con-
verges to a deterministic covariance matrix ΣSϕ =

Σ
1/2
ϕ Z⊤ΣSZΣ

1/2
ϕ . The spectral distribution FΣSϕ

of ΣSϕ converges to a limit probability distribution
µ supported on [0,+∞) and Σ is invertible and
bounded in operator norm.

Asymptotics Results
Theorem 1 (Asymptotic risk for ridge regression).
Under Assumptions 2 - 5, the nonlinear ridge re-
gression with subsampling estimator in (??) admits
the following limiting variance and bias:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 df2(κ)

m− df2(κ)
,∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

∼ mκ2θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗
m− df2(κ)

.

Corollary 1 (Under-parameterized regime). Un-
der Assumptions 2 - 5, if λ = 0 and γ < 1, the
nonlinear ridgeless regression with subsampling es-
timator admits:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 p

m−p ,
∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

= 0.

Corollary 2 (Over-parameterized regime). Under
Assumptions 2 - 5, if λ = 0 and γ > 1, with κ0

defined by df1(κ0) = m the nonlinear ridgeless re-
gression with subsampling estimator admits:

Eε

[∥∥∥θ̂ − Eε(θ̂)
∥∥∥2
ΣSϕ

]
∼ σ2 df2(κ0)

m− df2(κ0)
,∥∥∥Eε(θ̂)− θ∗

∥∥∥2
ΣSϕ

=
mκ2θ⊤∗ (ΣSϕ + κI)−2ΣSϕθ∗

m− df2(κ0)
.

Algorithm: RFRed
Based on random Fourier features, we devise Ran-
dom Feature Regression model with Effective Di-
mension (RFRed)

ϕ(x) =

√
2

p
cos(W⊤x+ b),

where the frequency matrix W = [w1, · · · , wp] ∈
Rd×p is trainable and initialized by a Gaussian dis-
tribution. The phase vectors b = [b1, · · · , bp] ∈ Rp

are drawn uniformly from [0, 2π].
Motivated by the asymptotics results, we devise the
following objective and optimize θ and W jointly.

L(θ; W ) =
1

n
∥Sϕ(X)θ− Sy∥22 + λ∥θ∥22 + β d̂f2(λ),

Complexity. Using batch stochastic gradient
method, we have ∇θL = 1

nX̃
⊤
b (X̃bθ − ỹb) where

{X̃b ∈ Rb×p, ỹb ∈ Rb} is a batch of {Sϕ(X), Sy}
with the batch size b. We also use the batch
data to approximate d̂f2(λ) where X̃ in (??) is re-
placed by X̃b. The compute of Sϕ(X) consumes
O(mnp + ndp). With T iterations, the update
of θ takes O(pbT ) time, the update of W con-
sumes O(pb2T ), and the compute of d̂f2(λ) requires
O(p

2nT
nα ).
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