	U	0 /	•/					INSTITUTE OF INFORMATION ENGINEERING, CAS	
Backgrounds			FedNS			FedNDES			
Federated algorithmsFirst-order methods (e.g. FedAvg & FedProx)Distributed Newton's MethodsNote: The computational complexities are computed solution, i.e., $L(\boldsymbol{w}_t) - L(\boldsymbol{w}_{\mathcal{D},\lambda}) < \delta$. M is the number	Communication Rounds $\mathcal{O}(1/t)$ $\mathcal{O}(\log 1/t)$ in terms of regularized least so r of model parameters.	Communication complexity $\mathcal{O}(M)$ $\mathcal{O}(M^2)$ quared loss to obtain a δ -accurate	Algorithm 1: Federated Learning with Newton Sketch (FedNS) Input: Feature mapping $\phi : \mathbb{R}^d \to \mathbb{R}^M$, start point w_0 , the termination iterations T and the step-size μ . Output: The global estimator w_T . 1: Local machines: Compute the local feature mapping data matrix $\phi(X_j)$. 2: for $t = 1$ to T do 3: Local machines: Sample the sketch matrix $S_i^t \in$			 Algorithm 2: Dimension-efficient federated Newton (FedNDES) Input: Feature mapping φ : ℝ^d → ℝ^M, start point w₀, accuracy tolerance δ > 0, line-search parameters (a, b), threshold sketch sizes m ₁ and m ₂, and the decrement parameter η. Output: The global estimator w_T. 1: Local machines: Compute the local feature mapping data matrix φ(X_j). Initialize and k_t = m ₁. 			
 Existing federated learning algorithms: First-order methods: Low communication burder Second-order methods: Fast convergence but high Motivation: How to take advantage of both first algorithms can achieve low communication burders 	$\begin{split} \mathbb{R}^{k \times n_j} \text{ from the SRHT. Compute local sketch Hessian matrices }} & \mathbf{Y}_{\mathcal{D}_j,\lambda} = S_j^t \nabla^2 L(\mathcal{D}_j, w_t)^{1/2} \text{ and local gradients } \boldsymbol{g}_{\mathcal{D}_j,t}. \text{ Upload them to the global server (\uparrow).} \end{split}$ 4: Global server: Compute the global Hessian matrix $\widetilde{H}_{\mathcal{D},t} = \sum_{j=1}^{m} \frac{n_j}{N} \mathbf{Y}_{\mathcal{D}_j,\lambda}^T \mathbf{Y}_{\mathcal{D}_j,\lambda} + \lambda \nabla^2 \alpha(w_t) \text{ and the global gradient } \boldsymbol{g}_{\mathcal{D},t} = \sum_{j=1}^{m} \frac{n_j}{N} \boldsymbol{g}_{\mathcal{D},j,t} + \lambda \nabla^2 \alpha(w_t) \text{ and the global estimator} \\ \boldsymbol{w}_t = \boldsymbol{w}_{t-1} - \mu \widetilde{H}_{\mathcal{D},t}^{-1} \boldsymbol{g}_{\mathcal{D},t} \\ \text{and communicate it to local machines } (\downarrow). \\ \underline{5: \text{ end for}} \end{split}$ 6. Local sketch Hessian $\begin{aligned} \mathbf{Y}_{\mathcal{D}_j,\lambda} = S_j \nabla^2 L(\mathcal{D}_j, \boldsymbol{w}_t)^{1/2}. \\ \text{Global sketch Hessian} \\ \widetilde{\mathcal{H}}_{\mathcal{D},t} = \sum_{j=1}^{m} \frac{n_j}{N} \mathbf{Y}_{\mathcal{D}_j,\lambda}^\top \mathbf{Y}_{\mathcal{D}_j,\lambda} + \lambda \nabla^2 \alpha(\boldsymbol{w}_t). \end{aligned}$			 2: for t = 1,, I do 3: Local machines: Sample the sketch matrix S^t_j ∈ ℝ^{k×n_j} from the SRHT. Compute local sketch square root Hessian Υ_{D_j,λ} = S^t_j∇²L(D_j, w_t)^{1/2} and local gradients g_{D_j,t}. Upload them to the global server (↑). 4: Global server: Compute the global Hessian matrix <i>H</i>_{D,t} = ∑^m_{j=1} ^{n_j} Υ^T_{D_j,λ} Υ_{D_j,λ} + λ∇²α(w_t), the global gradient g_{D,t} = ∑^m_{j=1} ^{n_j} g_{D_j,t and the approximate Newton star Are <i>H</i>_D.} 					
 Contributions: We propose a federated Newton sk second-order information across devices, i.e., local 1) On the algorithmic front. FedNS: a s communication-efficient Newton-type federated On the statistical front. Convergence and the statistical front. 				proximate Newton step $\Delta w_t = -H_{\mathcal{D},t} g_{\mathcal{D},t}$. Compute the approximate Newton decrement $\tilde{\lambda}(w_t) = g_{\mathcal{D},t}^T \Delta w_t$. If $\tilde{\lambda}(w_t)^2 \leq \frac{3}{4}\delta$ return the model w_t . Otherwise send Δw_t and $\tilde{\lambda}(w_t)$ to local workers. 5: Local machines: Line search from $\mu_j = 1$: while $L(\mathcal{D}_j, w_t + \mu_j \Delta w_t) > L(\mathcal{D}_j, w_t) + a\mu_j \tilde{\lambda}(w_t)$, then $\mu_j \leftarrow b\mu_j$. Send μ_j to the global server. 6: Global server: Let $\mu = \min_{j \in m} \mu_j$. Update the global estimator $w_t = w_{t-1} + \mu \Delta w_t$. If $\tilde{\lambda}(w_t) > \eta$, set $k = \overline{m}_1$. Otherwise, set $k = \overline{m}_2$. Communicate the global model w_t and the sketch size k to local machines (\downarrow). 7: end for					
$w_{\mathcal{D},\lambda} = \underset{w \in \mathcal{H}_{u}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \ell\left(f(\boldsymbol{x}_{i}), y_{i}\right) + \lambda \alpha(\boldsymbol{w}),$									
• Centralized Newton's Method	$ \begin{array}{c} $	$ \begin{array}{c} $	Comparison	Heterogeneous			Communicatio	ion Total communication com-	
$oldsymbol{w}_{t+1} = oldsymbol{w}_t - \mu \mathcal{H}_{\mathcal{D},t}^{-1} oldsymbol{g}_{\mathcal{D},t}, ext{with} \ oldsymbol{g}_{\mathcal{D},t} \coloneqq abla L(\mathcal{D}, oldsymbol{w}_t) + \lambda abla lpha (oldsymbol{w}_t),$	$(x) = 10^{0}$	n $ (x)$ 10^0 $-$ FedNewton $-$ FedNL $-$ FedNew	Related Work FedAvg (Li et al. 2020c; Su, Xu,	setting	Sketch size k	Iterations t $\mathcal{O}\left(\frac{1}{\delta}\right)$	$\mathcal{O}(M)$	$\frac{\mathcal{O}(\frac{M}{\delta})}{\mathcal{O}(\frac{M}{\delta})}$	
$\mathcal{H}_{\mathcal{D},t} := \nabla^2 L(\mathcal{D}, \boldsymbol{w}_t) + \lambda \nabla^2 \alpha(\boldsymbol{w}_t).$	$ \begin{array}{c c} - & - & - & - & - & - & - & - & - &$	$ \begin{array}{c c} & - & - & - & - & - & - & - & - & - & $	FedProx (Li et al. 2020a; Su, Xu, and Yang 2021)			$\mathcal{O}\left(\frac{1}{\delta}\right)$	$\mathcal{O}(M)$	$\mathcal{O}(\frac{M}{\delta})$	
• Newton's Method with Partial Sketching $\nabla^2 I(\mathcal{D}, \mathbf{u})$	0 50 Number of communication roun	100050100dsNumber of communication rounds	DistributedNewton (Ghosh, Maity, and Mazumdar 2020) LocalNewton (Gupta et al. 2021)	×		$\mathcal{O}\left(\log\frac{1}{\delta}\right)$ $\mathcal{O}\left(\log\frac{1}{\delta}\right)$	$\mathcal{O}(M)$ $\mathcal{O}(M)$	$\frac{\mathcal{O}(M\log\frac{1}{\delta})}{\mathcal{O}(M\log\frac{1}{\delta})}$	
$ \nabla L(\mathcal{D}, \boldsymbol{w}_t) = \\ (\boldsymbol{S} \nabla^2 L(\mathcal{D}, \boldsymbol{w}_t)^{1/2})^\top (\boldsymbol{S} \nabla^2 L(\mathcal{D}, \boldsymbol{w}_t)^{1/2}). $	• There is significant speeds of our prop	gaps between the convergence osed methods FedNS, FedNDES	FedNL (Safaryan et al. 2022) SHED (Fabbro et al. 2022) FedNewton			$ \begin{array}{c} \mathcal{O}\left(\log\frac{1}{\delta}\right) \\ \mathcal{O}\left(\log\frac{1}{\delta}\right) \\ \mathcal{O}\left(\log\log\frac{1}{\delta}\right) \\ \mathcal{O}\left(\log\log\log\frac{1}{\delta}\right) \\ \end{array} $	$\mathcal{O}(M)$ $-$ $\mathcal{O}(M^2)$	$ \begin{array}{c c} & \mathcal{O}(M \log \frac{1}{\delta}) \\ \hline & \mathcal{O}(M^2) \\ \hline & \mathcal{O}(M^2 \log \log \frac{1}{\delta}) \end{array} $	
• Federated Newton's Method (FedNewton)	and the existing NThe proposed F	ewton-type FL methods. edNS and FedNDES converge	FedNS (Algorithm 1) FedNDES (Algorithm 2)		$\begin{array}{c c} M\\ \tilde{d}_{\lambda} \end{array}$	$ \begin{array}{c} \mathcal{O}\left(\log\log\delta\right) \\ \mathcal{O}\left(\log\log\frac{1}{\delta}\right) \\ \mathcal{O}\left(\log\log\frac{1}{\delta}\right) \end{array} $	$\begin{array}{c} \mathcal{O}(kM) \\ \mathcal{O}(kM) \\ \end{array}$	$\frac{\mathcal{O}(kM \log \log \delta)}{\mathcal{O}(kM \log \log \frac{1}{\delta})}$ $\frac{\mathcal{O}(kM \log \log \frac{1}{\delta})}{\mathcal{O}(kM \log \log \frac{1}{\delta})}$	

$$\boldsymbol{w}_{t+1} = \boldsymbol{w}_t - \mu \mathcal{H}_{\mathcal{D},t}^{-1} \boldsymbol{g}_{\mathcal{D},t} \quad \text{with}$$

 $\mathcal{H}_{\mathcal{D},t} = \sum_{j=1}^m \frac{n_j}{N} \mathcal{H}_{\mathcal{D}_j,t}, \quad \boldsymbol{g}_{\mathcal{D},t} = \sum_{j=1}^m \frac{n_j}{N} \boldsymbol{g}_{\mathcal{D}_j,t}.$

FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning Jian Li¹, Yong Liu^{2,*} and Weiping Wang¹ ¹ Institute of Information Engineering, Chinese Academy of Sciences ² Gaoling School of Artificial Intelligence, Renmin University of China

- nearly to FedNewton, while FedNew and FedNL converge slowly closed to FedAvg.
- $\bullet~$ FedNDES converges faster than FedNS and the final predictive accuracies of FedNDES are higher.

$$\boldsymbol{w}_t = \boldsymbol{w}_{t-1} - \mu \widetilde{\boldsymbol{H}}_{\mathcal{D},t}^{-1} \boldsymbol{g}_{\mathcal{D},t}$$

$$\boldsymbol{\Upsilon}_{\mathcal{D}_j,\lambda} = \boldsymbol{S}_j \nabla^2 L(\mathcal{D}_j, \boldsymbol{w}_t)^{1/2}.$$

$$\widetilde{\mathcal{H}}_{\mathcal{D},t} = \sum_{j=1}^{m} \frac{n_j}{N} \Upsilon_{\mathcal{D}_j,\lambda}^{\top} \Upsilon_{\mathcal{D}_j,\lambda} + \lambda \nabla^2 \alpha(\boldsymbol{w}_t).$$

Note: The computational complexities are computed in terms of regularized least squared loss to obtain a δ -accurate solution, i.e., $L(w_t) - \delta$ $L(w_{\mathcal{D},\lambda}) \leq \delta$. The convergence analysis for FedAvg is provided in (Li et al. 2020c; Su, Xu, and Yang 2021) and that for FedProx is provided in (Li et al. 2020a; Su, Xu, and Yang 2021).

• The proposed algorithms achieve faster convergence with relatively small communication burdens.

中國科学院信息工程研究所

$$\tilde{\lambda}(\boldsymbol{w}_t) = \boldsymbol{g}_{\mathcal{D},t}^{\top} \Delta \boldsymbol{w}_t.$$

$$\boldsymbol{w}_t = \boldsymbol{w}_{t-1} + \mu \Delta \boldsymbol{w}_t.$$