
Operation-level Progressive Differentiable
Architecture Search

Xunyu Zhu
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

zhuxunyu@iie.ac.cn

Jian Li∗
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

lijian9026@iie.ac.cn

Yong Liu
Gaoling School of Artificial Intelligence

Renmin University of China
Beijing, China

liuyonggsai@ruc.edu.cn

Jun Liao
China Unicom Research Institute

China Unicom
Beijing, China

LIAOJ@chinaunicom.cn

Weiping Wang
Institute of Information Engineering

Chinese Academy of Sciences
Beijing, China

wangweiping@iie.ac.cn

Abstract—Differentiable Neural Architecture Search (DARTS)
is becoming more and more popular among Neural Architecture
Search (NAS) methods because of its high search efficiency and
low compute cost. However, the stability of DARTS is very
inferior, especially skip connections aggregation that leads to
performance collapse. Though existing methods leverage Hessian
eigenvalues to alleviate skip connections aggregation, they make
DARTS unable to explore architectures with better perfor-
mance. In the paper, we propose operation-level progressive
differentiable neural architecture search (OPP-DARTS) to avoid
skip connections aggregation and explore better architectures
simultaneously. We first divide the search process into several
stages during the search phase and increase candidate operations
into the search space progressively at the beginning of each
stage. It can effectively alleviate the unfair competition between
operations during the search phase of DARTS by offsetting the
inherent unfair advantage of the skip connection over other
operations. Besides, to keep the competition between operations
relatively fair and select the operation from the candidate
operations set that makes training loss of the supernet largest.
The experiment results indicate that our method is effective and
efficient. Our method’s performance on CIFAR-10 is superior to
the architecture found by standard DARTS, and the transferabil-
ity of our method also surpasses standard DARTS. We further
demonstrate the robustness of our method on three simple search
spaces, i.e., S2, S3, S4, and the results show us that our method
is more robust than standard DARTS.

Index Terms—DARTS, Neural Architecture Search, skip con-
nections aggregation, search space

I. INTRODUCTION

The development of machine learning [1]–[3] and deep
learning [4]–[6] has promoted the revolution in the field of
image classification. However, the cost of neural network
architectures designed by hand is very high because it needs
experienced experts to design high-performance network ar-
chitectures, which means that network architecture design
is unable to common for people. The problem impedes the
development of deep learning. Fortunately, the emergence

∗Corresponding author.

of neural architecture search (NAS) effectively alleviates the
problem. It can make neural network design automatically and
design high-quality networks that can be par with manually
designed architectures.

Architecture search methods based on reinforcement learn-
ing and evolutionary algorithms are the first architecture search
methods to be proposed. [7] proposes to leverage reinforce-
ment learning to sample subnetworks and make the validation
loss as the reward to help NAS select the best sub-architecture.
[8] proposes to leverage evolutionary algorithms to explore
subnetworks with better performance. However, these methods
based on reinforcement learning and evolutionary algorithms
cost are cumbersome. NASNet [9] proposes that NAS can se-
lect cells instead of the entire networks and stack cells to build
networks. The method reduces computational consumption by
compressing search space.

This paper proposes operation-level progressive differen-
tiable architecture search (OPP-DARTS) to alleviate skip con-
nections aggregation. Figure 1 shows the basic procedure of
OPP-DARTS. We first divide the search phase into several
stages. In the first stage, we select one candidate operation
with parameters to join in the supernet. After the first operation
joined in the supernet, we train the supernet several epochs
until the next stage. In the next stage, we select another
operation to join the supernet and train the supernet. We repeat
this action at every stage. Then we train the supernet until
the final epoch. In addition, different operations are unfair
to compete with each other during the training phase, such
as 3× 3 sep conv and skip connect. DARTS always would
like to select skip connect rather than 3×3 sep conv, which
means when skip connect joins the supernet earlier than
other operations, the supernet prefers to select skip connect.
Therefore, we make the operation loss as the criteria to help
the supernet select corresponding operation, i.e., the candidate
operation that makes operation loss largest will be selected to
join in the network.



Fig. 1: The bottom figure is an overview of OPP-DARTS and the above figure shows the search process of standard DARTS.

OPP-DARTS has demonstrated its effectiveness and effi-
ciency in Experiments (Section IV). We firstly search ar-
chitecture on CIFAR-10 by using similar training settings
with DARTS. Then, we evaluate the searched architecture
on CIFAR-10 and ImageNet, and the training settings are
also the same with DARTS. When evaluating it on CIFAR-
10, the test error of the searched architecture is 2.63% with
3.8M parameters, and the performance is much better than
standard DARTS. To verify the transferability of OPP-DARTS,
we transfer the searched architecture to train on ImageNet, and
the performance achieved on ImageNet shows that our method
outperforms standard DARTS. At last, we further demonstrate
the robustness of our method. We ran our method on three
simple search spaces, i.e., S2, S3, S4, and the final results
indicate that the robustness of our method is also better than
standard DARTS.

II. RELATED WORK

DARTS is a great innovation that relaxes neural architecture
search into a continuous problem, i.e., makes NAS differ-
entiable. Furthermore, this dramatically reduces computation
cost and can search architecture with good performance in
a single GPU day. However, DARTS has an unavoidable
problem, and the problem prevents DARTS from being ap-
plied. The problem is skip connections aggregation, i.e., the
architectures searched by DARTS are filled with excessive
skip connections, and this phenomenon makes DARTS per-
formance collapse. Some previous works have dealt with
the problem. [11] proposes Hessian eigenvalues as a signal
to monitor skip connections aggregation. SDARTS [12] reg-
ularizes Hessian eigenvalues by increasing perturbations to
alleviate skip connections aggregation. P-DARTS [13] draws
up rules manually to alleviate skip connections aggregation.
Existing methods regard Hessian eigenvalues or the number
of skip connections as the signal to guide to alleviate skip
connections aggregation. These methods make some rules by
hand or regularize Hessian eigenvalues to keep the stability
of DARTS. However, these methods seek quick success and
instant benefits because they make DARTS unable to explore
architectures with better performance. DARTS- [14] adds an

auxiliary skip connection to alleviate skip connections aggre-
gation. The method is simple, whereas memory consumption
will increase because of the extra skip connection.

III. METHOD

A. Preliminary of DARTS

Cell-based NAS methods [9], [15], [16] have been proposed
to learn cells instead of architectures to reduce computation
overhead in the process of architecture search. The networks
consist of many same cell structures. A cell is similar to
a directed acyclic graph (DAG), and it contains N nodes,
i.e., two input nodes, some intermediate nodes, and a single
output node. Each node is a latent representation symbolized
as x(i), and each directed edge denoted as (i, j) represents
an information flow that an operation o(i,j) in the directed
edge (i, j) transfers information from node x(i) to node
x(j). Differentiable Architecture Search (DARTS) [17] re-
laxes the selection problem of operations as a continuous
optimization problem. There is a candidate operations space
O, where o ∈ O represents a candidate operation, e.g.,
skip connect, 3 × 3 sep conv, and so on. In DARTS [17],
each edge consists of a set of operations from O, and these
operations are weighted by architecture parameters αi,j , and
it can be formulated as:

ō(i,j)(x) =
∑
o∈O

exp
(
α
(i,j)
o

)
∑
o′∈O exp

(
α
(i,j)
o′

)o(x), (1)

where 0 ≤ i < j ≤ N − 1. The input nodes of the cell take
the output from the previous two cells as input, and the output
node contacts all intermediate nodes as the output of the cell.
Each intermediate node is be obtained by its predecessors, i.e.
x(j) =

∑
i<j o

(i,j)
(
x(i)
)
. Finally, the architecture search of

DARTS becomes a bi-level optimization problem:

min
α

Lval (w∗(α), α)

s.t. w∗(α) = argminw Ltrain (w,α),

where Lval and Ltrain are validation and training loss, w is the
network weights, and α is the architecture weights. According
to DARTS [17], the bi-level optimization problem is solved by



a first/second-order approximation. When the search process
is nearly finished, an optimal substructure is obtained based
on the architecture weights α, i.e., o(i,j) = argmaxo∈O α

(i,j)
o .

B. Increasing Operations Progressively
To eliminate unfairness between operations, we propose

operation-level progressive differentiable architecture search,
briefly called ”OPP-DARTS”. In other words, we increase
operations progressively to expand the search space during
the search phase of DARTS, as illustrated in Figure 1, and the
OPP-DARTS is detailed in Alg. 1. Firstly, the search phase of
DARTS is divided into several stages denoted as stage 1...K,
each stage consists of T epochs, and one operation will be
increased into the search space of DARTS every stage.

Then, we will begin increasing operations to enlarge search
space. Because the supernet must own an operation with
parameters to make itself trainable, we must select an op-
eration with parameters at stage 0. We first define candidate
operations with parameters set as Opm. Furthermore, we select
an operation o from candidate operations set Opm. Then, we
increase it into the supernet and begin to train the supernet
until the next stage.

Afterwards, we will define the candidate operations set as
O, and the candidate operations set O includes all candi-
date operations except the operation selected in stage 0 and
skip connect. At the beginning of each stage, we select an
operation from candidate operations set O, and increase it into
the supernet to train, i.e.,

min
α

Lval (o,Ω, w∗, α) (2)

s.t. w∗ = argminw Ltrain (o,Ω, w, α) (3)
o ∈ O, (4)

where o is the operation selected at the stage and Ω is the
search space of the supernet. In this way, these operations
increased into the supernet early have the advantage compared
to those increased into the supernet lately because these
operations that are increased into the supernet early can
learn more valuable knowledge than those operations. We can
alleviate the unfair natural advantages between operations to
make operations compete fairly. When we pick operations at
random from the candidate operations set O, it may cause a
negative effect if we select operations with natural advantages
compared with the others to increase it into the supernet earlier
than other operations. Thus, we need to design a criterion
to guide us to select operations, and Section III-C shows a
criterion to alleviate the problem.

In stage K − 1, we increase skip connect into the super-
net because skip connection has the most significant natural
advantages than other operations. By increasing it into the
supernet, at last, we can make other operations offset the
natural advantages of skip connection to make operations
compete fairly.

C. Operation Loss
By increasing operations progressively, we can make op-

erations compete fairly during the search phase. However,

the problem still needs to be solved, i.e., when we select
operations from the candidate operations set O at each stage,
we need to decide to select which operation to increase in
the supernet. The problem is very critical because if we select
operations with natural advantages compared with the others to
increase it into the supernet earlier than other operations, it will
negatively impact it. Thus, we need to design an applicable
criterion to guide us to make operation selection.

[21] indicates that edges share the same optimal feature
map in a cell, and it means the edge feature graphs will
be closer and closer as the network converges. The feature
map of an edge can be represented as Eq. 1. At initialization,
if the feature map on an operation is close to the optimal
feature map, the architecture parameter α of the operation will
become larger at the beginning of the architecture search. It
will result in unfairness in initialization. To keep operations
competing fairly, we select the operation which can make the
supernet gain the largest training loss after the operation is
increased into the supernet at the beginning of each stage,
called ”operation loss”, i.e.,

o = argmaxo∈OLtrain(o, w, α), (5)

where o is the operation that is selected at the stage. When
we use ”operation loss” as a criterion to guide us to select an
operation at the beginning of each stage, we can make feature
maps of operations relatively close to the optimal feature map
before they begin to compete with each other. We increase the
operation that owns the largest ”operation loss” to train at each
stage so that the operation can be more closed to the optimal
feature map. Thus, it can alleviate unfairness in initialization.
Furthermore, the search process of DARTS can be formalized
as follows:

min
α

Lval (o,Ω, w∗, α) (6)

s.t. w∗ = argminw Ltrain (o,Ω, w, α) (7)
o = argmaxo∈OLtrain(o,Ω, w, α), (8)

where Ω is the search space of the supernet. In addition, the
feature map of operation is saved in the parameters of opera-
tion. Training loss is used to optimize network parameters, i.e.,
training loss has a maximum correlation with the feature map
of operation, so we select training loss instead of validation
loss.

We know that skip connection owns a natural advantage
because it can make the network coverage faster, and it means
that skip connection owns a more significant advantage than
other operations, so we increased it into the supernet at the
final stage to keep operations compete fairly.

D. Discussion

In the paper, our method is proposed to deal with per-
formance collapse in DARTS arising from skip connections
aggregation. Our method owns two contributions mainly, i.e.,
operation-level increasing operations progressively and opera-
tion loss. The first contribution is a very significant innovation
to alleviate skip connections aggregation. Compared with



Algorithm 1 Operation-level Progressive Differentiable Ar-
chitecture Search (OPP-DARTS)

Require: The search space of the supernet Ω, all candidate
operations set <.
Select ϑ ∈ Opm based on Eq. (5) to join in Ω;
Initialize O = < \ {skip connect, ϑ}
for i = 1 to E do

if i % T == 0 and i ≤ T × k then
Select o ∈ O based on Eq. (5) to join in Ω;
Remove o from O;

end if
if i == T × (k + 1) then

Select skip connect to join in M ;
end if
Update architecture parameters α by descending
5αLval(w,α);
Update weights w by descending 5wLtrain(w,α);

end for

other works to alleviate performance collapse in DARTS by
indicator-based methods (e.g., R-DARTS [11], SDARTS [12]),
we alleviate performance collapse by optimizing the search
space of DARTS to keep operations compete with each other
fairly. Thus the view of our research is very novel. The sec-
ond contribution is proposed to solve the operation selection
problem at the beginning of each stage. If we select operations
from candidate operations set at random, operations will suffer
from unfairness in initiation, making DARTS work worse. By
operation loss, we can alleviate unfairness in the initiation and
make DARTS work well. We obtain a good performance (a test
error of 2.63%) on CIFAR-10 by combining two contributions,
and the result indicates that our method makes a remarkable
improvement in accuracy on standard DARTS. At the same
time, the transferability and robustness of our method are also
demonstrated to be better than standard DARTS.

IV. EXPERIMENTS

We first search normal and reduction cells on CIFAR-10
[22] in Section IV-A . Then, we stack the selected cells to
build a new deeper network to evaluate its performance on
CIFAR-10 in Section IV-B. Further, Section IV-C shows the
transferability of OPP-DARTS by stacking cells to build an
even deeper network and then evaluating it on ImageNet.
Finally, we verify the robustness of our methods by searching
architectures on some simple search space, i.e., S2, S3, S4 in
Section IV-D.

A. Architecture Search on CIFAR-10

CIFAR-10 is an images dataset that contains 50K train-
ing images and 10K test images. In the next moment,
we will introduce our search space. Our search space con-
sists of eight operation, i.e., max pool 3× 3, avg pool 3×
3, zero, sep conv 3 × 3, sep conv 5 × 5, dil conv 3 ×
3, dil conv 5 × 5, it is the same with DARTS. Our training
settings are also the same with DARTS, we stack 6 normal

TABLE I: Comparison with state-of-the-art image classifiers
on CIFAR-10 (lower error rate is better).

Architecture Test Err.
(%)

Params
(M)

Search Cost
(GPU-days)

Search
Method

DenseNet-BC [25] 3.46 25.6 - manual

NASNet-A [9] 2.65 3.3 1800 RL
AmoebaNet-A [16] 3.34±0.06 3.2 3150 evolution
AmoebaNet-B [16] 2.55±0.05 2.8 3150 evolution

PNAS [15] 3.41±0.09 3.2 225 SMBO
ENAS [10] 2.89 4.6 0.5 RL

DARTS (1st order) [17] 3.00±0.14 3.3 0.4 gradient
DARTS (2nd order) [17] 2.76±0.09 3.3 1 gradient

SNAS (mild) [18] 2.98 2.9 1.5 gradient
ProxylessNAS [26] 2.08 - 4 gradient

P-DARTS [13] 2.5 3.4 0.3 gradient
PC-DARTS [19] 2.57±0.07 3.6 0.1 gradient

SDARTS-RS [12] 2.67±0.03 3.4 0.4 gradient
GDAS [27] 2.93 3.4 0.3 gradient

R-DARTS (L2) [11] 2.95±0.21 - 1.6 gradient
SGAS (Cri 1. avg) [28] 2.66±0.24 3.7 0.25 gradient

DARTS-PT [21] 2.61±0.08 3.0 0.8 gradient

OPP-DARTS 2.63±0.27 1 3.8 0.4 2 gradient

1 We ran OPP-DARTS 5 times with different search seeds to search
cells, and evaluated the best cells 10 times with different evaluation
seeds to get average test error and variance of test error.

2 Recorded on a single GTX 2080Ti.

cells and 2 reduction cells to build a network, and the reduction
cells are inserted in a network of 1/3 and 2/3, respectively. A
cell includes 7 nodes with 4 intermediate nodes, every node
represents a feature map, and the number of edges in a cell
is 14. The input of two input nodes in a cell is the output
of two previous cells, and the output node of a cell is the
concatenation of all intermediate nodes.

We perform an architecture search for 50 epochs with a
batch size of 64, and the architecture search is divided into
8 stages. Each stage includes 2 epochs. We increase one
candidate operation in the search space at the beginning of
each stage and train the supernet until the next stage. After
the final stage, we train the supernet until the final epoch.
During the training, we leverage SGD [23] as an optimizer
to optimize model weights W , and its initial learning rate is
3×10−4, momentum is (0.5, 0.999), weight decay is 10−3. At
the same time, we leverage Adam [24] to optimize architecture
weights, and its initial learning rate is 3×10−4, momentum is
(0.5, 0.999), weight decay is 10−3. The search phase spends
0.4 GPU day on a single NVIDIA GTX 2080Ti. We ran 5
times independent search experiments with 5 different seeds,
and the best cells were found are illustrated in Figure 2.

B. Architecture Evaluation on CIFAR-10

The cells found by OPP-DARTS have shown in Figure 2,
and then we will stack these cells to evaluate their performance
on CIFAR-10. We build a large network with 20 cells and
36 initial channels. After building the network, we train the
stacked network until 600 epochs with a batch size of 96.
Furthermore, other training settings are the same with DARTS,
such as cutout with length 16, auxiliary towers with weight
0.4, and path dropout with a probability of 0.3.



c_{k-2} 0
sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

3
dil_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect

c_{k}
c_{k-2}

0

avg_pool_3x3
1

avg_pool_3x3

2

avg_pool_3x3

3

avg_pool_3x3

c_{k-1}
sep_conv_3x3
sep_conv_3x3

skip_connect
skip_connect c_{k}

(a) Normal cell (b) Reduction cell

Fig. 2: Best cells are found by OPP-DARTS on CIFAR-10 (a). Normal cell is found by OPP-DARTS. (b). Reduction cell is
found by OPP-DARTS.

We compare our result on CIFAR-10 with other methods
in Table I, such as Darts- [14], SGAS [28]. Table I shows
that our method (OPP-DARTS) improves standard DARTS’
test error from 3.00% to 2.63%, with identical search cost
(0.4 GPU days) on a single NVIDIA GTX 2080Ti. Our
method surpasses them a lot compared to other indicator-
based variants, such as SDARTS-RS and R-DARTS (L2). The
result further demonstrates that the indicator-based method
can alleviate skip connections aggregation but prevent DARTS
from exploring better architectures.

C. Architecture Evaluation on ImageNet

To verify the transferability of our method, we evaluate
architecture on ImageNet by using the best cells searched on
CIFAR-10. ILSVRC 2012 [29] is a famous ImageNet dataset,
and we leverage it to test our architecture searched on CIFAR-
10.

The network configuration is also the same as DARTS, i.e.,
the network used to evaluate is stacked by 14 cells, and the
number of its initial channels is 48. The stacked network is
trained from scratch for 250 epochs, and its batch size is 256
during the training phase of the network. An SGD optimizer
optimizes the network’s parameters; the optimizer’s initial
learning rate is 0.2, weight decay is 3 × 10−5, momentum
is 0.9.

Table II shows our evaluation result, and we compare our
result with SOTA manual architectures and models obtained
through other search methods. The architecture found by OPP-
DARTS on CIFAR-10 is superior to the architecture found by
standard DARTS in the image classification task, and it means
that the transferability of our method is better than standard
DARTS.

D. Robustness of OPP-DARTS

Because of skip connections aggregation, DARTS will face
a performance crash when DARTS searches architectures on
three simple search space [11], i.e., S2, S3, S4. S2 is consist
of two operations per edge: (skip connect, 3×3 sep conv).
S3 is consist of three operations per edge: (skip connect, 3×
3 sep conv, zero). S4 is consist of two operations per edge:
(noise, 3 × 3 sep conv). [11] discovers that when DARTS
is used to search architectures on S2, S3, it finds suboptimal
architectures, and the performance of architectures is inferior.
Even though on S4, DARTS selects excessive harmful noise
operations.

TABLE II: Comparison with state-of-the-art classifiers on
ImageNet.

Architecture Test Err.(%) Params
(M)

×+
(M)

Search Cost
(GPU-days)

Search
Methodtop-1 top-5

Inception-v1 [30] 30.2 10.1 6.6 1448 - manual
MobileNet [31] 29.4 10.5 4.2 569 - manual

ShuffleNet 2x (v1) [32] 26.4 10.2 ∼5 524 - manual
ShuffleNet 2x (v2) [33] 25.1 - ∼5 591 - manual

NASNet-A [9] 26 8.4 5.3 564 1800 RL
NASNet-B [9] 27.2 8.7 5.3 488 1800 RL
NASNet-C [9] 27.5 9 4.9 558 1800 RL

AmoebaNet-A [16] 25.5 8 5.1 555 3150 evolution
AmoebaNet-B [16] 26 8.5 5.3 555 3150 evolution
AmoebaNet-C [16] 24.3 7.6 6.4 570 3150 evolution

FairNAS-A [34] 24.7 7.6 4.6 388 12 evolution
PNAS [15] 25.8 8.1 5.1 588 225 SMBO

MnasNet-92 [35] 25.2 8 4.4 388 - RL

DARTS(2nd order) [17] 26.7 8.7 4.7 574 4.0 gradient
SNAS (mild) [18] 27.3 9.2 4.3 522 1.5 gradient
ProxylessNAS [26] 24.9 7.5 7.1 465 8.3 gradient

P-DARTS [13] 24.4 7.4 4.9 557 0.3 gradient
PC-DARTS [19] 25.1 7.8 5.3 586 0.1 gradient

SGAS (Cri.1 avg.) [28] 24.41 7.29 5.3 579 0.25 gradient
GDAS [27] 26.0 8.5 5.3 581 0.21 gradient

OPP-DARTS 25.61 8.15 5.3 610 0.4 gradient

TABLE III: OPP-DARTS on S2-S4 (test error (%))

Space DARTS OPP-DARTS
S2 5.94 2.93
S3 3.04 2.90
S4 4.85 3.21

To verify the robustness of our methods, we search architec-
tures on these search spaces by OPP-DARTS. Table III shows
the results of the OPP-DARTS search in the S2-S4. When
searching on S2, the performance of OPP-DARTS (a test error
of 2.84%) is far further than DARTS. At the same time, we
use OPP-DARTS to search architectures on S3 and S4. Table
III also shows that the performance of OPP-DARTS on S3 and
S4 is better than DARTS. Based on these above experiments,
OPP-DARTS is more robust than DARTS.

V. CONCLUSIONS

In this paper, we propose operation-level progressive dif-
ferentiable architecture search to alleviate skip connections
aggregation. The core idea is that we split the search space
into multiple stages and increase operations into search space
at the beginning of each stage. In addition, we select the
operation that makes the training loss of the supernet largest



from candidate operations set to keep operations competing
fairly.

VI. ACKNOWLEDGEMENTS

This work is supported in part by Excellent Talents
Program of Institute of Information Engineering, CAS, Spe-
cial Research Assistant Project of CAS (No. E0YY231114),
Beijing Outstanding Young Scientist Program (No.
BJJWZYJH012019100020098) and National Natural Science
Foundation of China (No. 62076234, No. 62106257). At
the same time, the work is also supported by Intelligent
Social Governance Platform, Major Innovation & Planning
Interdisciplinary Platform for the “Double-First Class”
Initiative, Renmin University of China. We also wish to
acknowledge the support provided and contribution made by
Public Policy and Decision-making Research Lab of Renmin
University of China.

REFERENCES

[1] J. Li, Y. Liu, and W. Wang, “Automated spectral kernel learning,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 4618–4625. [Online].
Available: https://aaai.org/ojs/index.php/AAAI/article/view/5892

[2] J. Li, Y. Liu, R. Yin, and W. Wang, “Multi-class learning using unlabeled
samples: Theory and algorithm,” in Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, S. Kraus, Ed. ijcai.org, 2019, pp.
2880–2886. [Online]. Available: https://doi.org/10.24963/ijcai.2019/399

[3] R. Yin, Y. Liu, W. Wang, and D. Meng, “Distributed nyström kernel
learning with communications,” in Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 12 019–12 028. [Online].
Available: http://proceedings.mlr.press/v139/yin21a.html

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2015.

[7] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2017. [Online]. Available: https://arxiv.org/abs/1611.01578

[8] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” 2019.

[9] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transfer-
able Architectures for Scalable Image Recognition,” arXiv e-prints, p.
arXiv:1707.07012, Jul. 2017.

[10] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” in ICML, 2018.

[11] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter,
“Understanding and robustifying differentiable architecture search,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=H1gDNyrKDS

[12] X. Chen and C.-J. Hsieh, “Stabilizing differentiable architecture search
via perturbation-based regularization,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 1554–1565. [Online]. Available:
http://proceedings.mlr.press/v119/chen20f.html

[13] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evaluation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[14] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, “{DARTS}-:
Robustly stepping out of performance collapse without indicators,” in
International Conference on Learning Representations, 2021. [Online].
Available: https://openreview.net/forum?id=KLH36ELmwIB

[15] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive Neural Architecture
Search,” arXiv e-prints, p. arXiv:1712.00559, Dec. 2017.

[16] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized Evo-
lution for Image Classifier Architecture Search,” arXiv e-prints, p.
arXiv:1802.01548, Feb. 2018.

[17] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architecture
Search,” arXiv e-prints, p. arXiv:1806.09055, Jun. 2018.

[18] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: Stochastic Neural
Architecture Search,” arXiv e-prints, p. arXiv:1812.09926, Dec. 2018.

[19] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong,
“Pc-darts: Partial channel connections for memory-efficient architecture
search,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=BJlS634tPr

[20] X. Chu, T. Zhou, B. Zhang, and J. Li, “Fair darts: Eliminating unfair
advantages in differentiable architecture search,” in Computer Vision –
ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.
Cham: Springer International Publishing, 2020, pp. 465–480.

[21] R. Wang, M. Cheng, X. Chen, X. Tang, and C.-J. Hsieh, “Rethinking
architecture selection in differentiable NAS,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=PKubaeJkw3

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[23] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1999.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[25] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[26] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural
architecture search on target task and hardware,” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=HylVB3AqYm

[27] X. Dong and Y. Yang, “Searching for a robust neural architecture in
four gpu hours,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 1761–1770.

[28] G. Li, G. Qian, I. C. Delgadillo, M. Müller, A. Thabet, and B. Ghanem,
“Sgas: Sequential greedy architecture search,” in Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[29] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
2014.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017.

[32] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[33] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Computer Vision –
ECCV 2018, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.
Cham: Springer International Publishing, 2018, pp. 122–138.

[34] X. Chu, B. Zhang, R. Xu, and J. Li, “Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search,” 2020.

[35] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2019, pp. 2815–2823. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00293


