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Non-IID Data Partitioning in Federated Learning

In Federated Learning (FL) McMahan et al. [2017], the raw data of each
client is stored locally and can not be obtained by any third party→
Non-IID problem.
Non-IID (not independently or identically distributed) data partitioning:

1 The distribution is different on different clients.

2 The amount of data among different clients is unbalanced.

3 Data on some clients may be relevant.

The non-IID problem leads to the decline of the model’s effectiveness
compared to centralized learning (CL).
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Lack of Generalization Analysis

Many studies try to solve the non-IID problem by designing new
algorithms empirically Wang et al. [2020a], Smith et al. [2017],
Pustozerova et al. [2021], McMahan et al. [2017], Li et al. [2020a],
Karimireddy et al. [2020], Yu et al. [2019], Wang et al. [2020b], Li et al.
[2020c], Briggs et al. [2020], while only a few studies have carried out
generalization analysis Mohri et al. [2019] for FL.

FedAvg applies iterative model averaging to deal with non-IID data.
Using local momentum instead of local SGD.
Using clustering to FL.
Agnostic FL provides a generalization view of FL, but the target is to
optimize the worst case in the hypothesis.

Lack of generalization analysis for FL under the traditional framework.
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Contributions

We analyze the excess risk for FL with non-IID data, which measures the gap
between the global model trained by FL and the optimal model trained by CL.

Theoretically: We give the excess risk bound between FL on non-IID
data and CL for the first time and find out the factors that affect the
accuracy decline. We give a reasonable explanation for the bound by
decomposing the excess risk into three terms: agnostic error, federated
error and approximation error.
Algorithmically: We propose a novel algorithm FedAvgR (Federated
Averaging with Regularization) to improve the performance of FL on
non-IID data, which is regularized by Rademacher complexity and
discrepancy distance.
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Preliminaries and Notations
Assume that there are K clients in a FL setting, where samples (xk, yk)
on the k-th client with size of nk are drawn i.i.d. from distribution ρk, data
on different clients may not have the same distribution (ρi 6= ρj), and all
clients participate in each communication round.
The global distribution is assumed to be a mixture distribution of local
distributions on all K clients: ρ =

∑K
k=1 pkρk, where pk is the mixture

weight (
∑K
k=1 pk = 1). Actually, the mixture weight pk is unknown, so an

estimated weight p̂k will be applied in practice, which brings us the
estimated global distribution ρ̃ =

∑K
k=1 p̂kρk.
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Preliminaries and Notations

The hypothesis space H = {x→ f(x)} consists of labeling functions
f : X → Y, where X ⊆ Rd represents the input space and Y ⊆ RC
represents the label space. Let `(f(x), y) be the loss function, which is
assumed to be upper bounded by M (M > 0), and
L = {`(f(x), y)|f ∈ H} be the family of loss functions on H, the expected
loss of FL on ρ can be described as

Eρ(f) =
K∑
k=1

pkEρk(f) =

K∑
k=1

pk

∫
X×Y

`(f(x), y)dρk(x, y),

and the corresponding empirical loss is

Êρ(f) =

K∑
k=1

pkÊρk(f) =

K∑
k=1

pk
1

nk

nk∑
i=1

`(f(xki ), yki ).

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 8 / 33



Contents

1. Introduction

2. Preliminaries and Notations

3. Generalization Analysis

4. Algorithm: FedAvgR

5. Experiments

6. Conclusion

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 9 / 33



Error Decomposition

Excess risk :

Eρ(f̃fl)− Eρ(f∗) = Eρ(f̃fl)− Eρ(f̂fl)︸ ︷︷ ︸
A1:=

+ Eρ(f̂fl)− Eρ(f̂cl)︸ ︷︷ ︸
A2:=

+ Eρ(f̂cl)− Eρ(f∗)︸ ︷︷ ︸
A3:=

A1: agnostic error, A2: federated error, A3: approximation error.

f̃fl = argminf∈H
∑K
k=1 p̂kÊρk (f) is the empirical learner of FL on ρ̃,

f̂fl = argminf∈H
∑K
k=1 pkÊρk (f) is the empirical learner on ρ,

f̂cl = argminf∈H
1
n

∑n
i=1 `(f(xi), yi) is the empirical learner of CL, and

f∗ = argminf∈H Eρ(f) is the expected (optimal) learner in H which
minimizes the expected loss on ρ.

The labeling function f is formed asf(x) = W Tφ(x),where W ∈ RD×C ,
φ(x) ∈ RD and φ(·) is the feature mapping with learnable parameters ϕ.

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 10 / 33



Bounds of Three Error Terms
To measure the performance gap of a model on different distributed data, we
introduce the discrepancy distance Mansour et al. [2009] as follows:

discL(Q1, Q2) = sup
f∈H
|EQ1

(f)− EQ2
(f)| ,

where Q1 and Q2 are two different distributions.

Theorem (Agnostic Error Bound)
Assume that `(f(x), y) is λ-Lipschitz equipped with the 2-norm, that is
|`(f(x), y)− `(f(x′), y′)| ≤ λ‖f(x)− f(x′)‖2, B = supf=WTφ(x)∈H ‖W ‖∗,
where ‖ · ‖∗ denotes the trace norm. With probability at least 1− δ (δ > 0):

A1 ≤ 2discL(ρ̃, ρ) + 4
√

2λB

K∑
k=1

p̂k
nk

√
C‖φ(Xk)‖F + 6M

√
S(p̂||n̄) log(2/δ)

2n
,

where ‖φ(Xk)‖F =
√∑nk

i=1

〈
φ(xki ), φ(xki )

〉
, S(p̂||n̄) = χ2(p̂||n̄) + 1, χ2

denotes the chi-squared divergence, p̂ = [p̂1, ..., p̂K ], and n̄ = 1
n [n1, ..., nK ].
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Proof Sketch

We first decompose A1 into the following parts:

A1 =Eρ(f̃fl)− Eρ̃(f̃fl) + Eρ̃(f̃fl)− Eρ̃(f̂fl)︸ ︷︷ ︸
A′

1:=

+Eρ̃(f̂fl)− Eρ(f̂fl)

We further decompose A′1 as:

A′1 = Eρ̃(f̃fl)− Êρ̃(f̃fl)︸ ︷︷ ︸
A11:=

+ Êρ̃(f̃fl)− Êρ̃(f̂fl)︸ ︷︷ ︸
A12:=

+ Êρ̃(f̂fl)− Eρ̃(f̂fl)︸ ︷︷ ︸
A13:=

The remain parts of A1 can be bounded by 2discL(ρ, ρ̃).

Êρ̃(f̃fl) ≤ Êρ(f̂fl) ⇒ A12 ≤ 0.
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Proof Sketch

Let H be a hypothesis space of f defined over X , L be the family of loss
functions associated to H, n = [n1, ..., nK ] be the vector of sample sizes and
p = [p1, ..., pK ] be the mixture weight vector, the empirical weighted
Rademacher complexity of L is

R̂(L,p) = Eε

[
sup
f∈H

K∑
k=1

pk
nk

nk∑
i=1

εki `(f(xki ), yki )

]
,

and the empirical weighted Rademacher complexity of H is

R̂(H,p) = Eε

[
sup
f∈H

K∑
k=1

pk
nk

nk∑
i=1

C∑
c=1

εkicfc(x
k
i )

]
,

where fc(xki ) is the c-th value of f(xki ) corresponding to the C classes, εki s
and εkics are independent Rademacher variables, which are uniformly sampled
from {−1,+1}, respectively.
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Proof Sketch

A11 and A13 can be bounded by weighted Rademacher complexity:

For any sample S = {S1, ...Sn} drawn from ρ, define Φ(S) by

Φ(S) = sup
f∈H

(Eρ̃(f)− Êρ̃(f)).

Let S′ = {S′1, ...S′n} be a sample differing from S only by point x′ki in S′k
and xki in Sk. Then, we have

|Φ(S)− Φ(S′)| ≤ p̂k
nk
M.

Applying McDiarmid’s inequality and Jensen’s inequality, we get

Φ(S) ≤ 2R̂(L, p̂) + 3M

√
χ2(p̂||n̄) + 1

2n
log

2

δ
.

A11, A13 ≤ Φ(S)
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Proof Sketch

Estimate weighted Rademacher complexity:

Lipschitz assumption: R̂(L, p̂) ≤
√

2λR̂(H, p̂).

Rewriting R̂(H, p̂):

R̂(H, p̂) = Eε

[
sup
f∈H

K∑
k=1

p̂k
nk
〈Wk,Φk〉

]
,

where Wk,Φk = [
∑nk

i=1 ε
k
i1φ(xki ), ...,

∑nk

i=1 ε
k
iCφ(xki )] ∈ RD×C and

〈Wk,Φk〉 = Tr(W T
k Φk).

Hölder’s inequality : R̂(H, p̂) ≤ B
∑K
k=1

p̂k
nk

√
Eε[‖Φk‖2F ].

Jensen’s inequality : Eε[‖Φk‖2F ] ≤ C‖φ(Xk)‖2F .
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Bounds of Three Error Terms

Theorem (Federated Error Bound)
Under the same assumptions as the Theorem before, with probability at least
1− δ(δ > 0), we have:

A2 ≤
K∑
k=1

pk

(
discL(ρk, ρ) +

4
√

2λB

nk

√
C‖φ(Xk)‖F

)
+

K∑
k=1

pk

6M

√
log(2/δ)

2nk

 .

Theorem (Approximation Error Bound)
Under the same assumptions as the Theorem before, with probability
1− δ(δ > 0), we have:

A3 ≤
4
√

2λB

n

√
C‖φ(X)‖F + 3M

√
log(2/δ)

2n
,

where ‖φ(X)‖F =
√∑n

i=1〈φ(xi), φ(xi)〉.

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 16 / 33



Proof Sketch

Note that A2 =
∑K
k=1 pk[Eρk(f̂fl)− Eρ(f̂cl)︸ ︷︷ ︸

A′
2:=

], we decompose A′2 as:

Eρk(f̂fl)− Êρk(f̂fl)︸ ︷︷ ︸
A21

+ Êρk(f̂fl)− Êρk(f̂cl)︸ ︷︷ ︸
A22

+ Êρk(f̂cl)− Eρk(f̂cl)︸ ︷︷ ︸
A23

+ Eρk(f̂cl)− Eρ(f̂cl)︸ ︷︷ ︸
A24

Substituting A22 into the equation of A2, due to the definition of f̂fl, we have

K∑
k=1

pk[Êρk(f̂fl)− Êρk(f̂cl)] ≤ 0

A21 and A23 can be bounded by Rademacher complexity.
A24 can be bounded by discL(ρk, ρ).
A3 is a constant multiple of the generalization bound for CL, which can be
bounded by Rademacher complexity, as well.
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Excess Risk Bound

Theorem (Excess Risk Bound)
Under the same assumptions as the Theorem before, With probability at least
1− δ (δ > 0), the excess risk bound of federated learning on non-IID data
holds as follows:

Eρ(f̂fl)− Eρ(f∗) ≤ O (G1 +G2 +G3) ,

where G1 = discL(ρ̃, ρ) +
K∑
k=1

p̂kB
√
C

nk
‖φ(Xk)‖F +

√
S(p̂||n̄)

n ,

G2 = B
√
C

n ‖φ(X)‖F +
√

1
n and

G3 =
K∑
k=1

pk[discL(ρk, ρ) + B
√
C

nk
‖φ(Xk)‖F +

√
1
nk

].
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Excess Risk Bound

According to the bound, we can lower the excess risk by reducing
discL(ρk, ρ), ‖W ‖∗, ‖φ(Xk)‖F , and discL(ρ̃, ρ).
In non-IID condition, samples on different clients are drawn from different
distributions, so the gap between ρk and ρ certainly exists. Furthermore,
pk is unknown, how can we reduce discL(ρ̃, ρ)?

discL(ρk, ρ) ↓ ⇒ discL(ρ̃, ρ) ↓
Especially, when ρk = ρ, whatever value we choose for p̂k, it’s not going
to make big difference to the global distribution. Therefore, we are able to
lower the excess risk by reducing discL(ρk, ρ), ‖W ‖∗ and ‖φ(Xk)‖F .
Corollaries (φ(·) is upper bounded by κ2 and p̂k = pk)

discL(ρk, ρ) = 0: O
(
(κB

√
C + 1)

∑K
k=1 p̂k

√
1
nk

)
nk = n/K: O

(
κB
√
KC/n

)
(distributed learning)

K = 1: O(κB
√
C/n) (centralized learning)
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FedAvgR: Federated Averaging with Regularization

1 We choose MMD (Maximum Mean Discrepancy) Borgwardt et al. [2006]
to measure the distance between different distributions Q1 and Q2, which
is formed as

MMD[Q1, Q2] = sup
f∈H

(EQ1
[f(x)]− EQ2

[f(x)]) .

The local distribution ρk won’t change during training, so we shall reduce
the discrepancy after feature mapping. In other words, we can reduce
discL(ρφk , ρ

φ) instead of discL(ρk, ρ), where ρφk and ρφ are respectively the
local feature distribution on client k and global feature distribution.

2 Taking MMD[ρφk , ρ
φ] as a regularizer with ‖W ‖∗ and ‖φ(Xk)‖F , the

objective function on the k-th client is

min
W ,ϕ

1

nk

nk∑
i=1

`(f(xki ), yki ) + α‖W ‖∗ + β‖φ(Xk)‖F + γMMD[ρφk , ρ
φ].
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FedAvgR: Federated Averaging with Regularization
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Experimental Setup

Environment: All the experiments are trained on a Linux x86 64 server
(CPU: Intel(R) Xeon(R) Silver 4214 (RAM: 196 GB) / GPU: NVIDIA
GeForce RTX-2080ti).
Datasets:

1 The synthetic dataset in our experiment is generated related to the method
in Li et al. [2020b], where the number of samples nk on client k follows a
power law.

2 We apply the partitioning method related to McMahan et al. [2017] to some
LIBSVM Chang and Lin [20] datasets to get non-IID data. We sort each
dataset by the label and divide it into N/Ns shards of size Ns, where N is
the total number of samples, then we assign each client 2 shards.

Model: We use Random Fourier Feature Rahimi and Recht [2007] to do
the feature mapping φ(·), which is formed as

√
2 cos(ωTx + b), where ω is

sampled from N (0, σ2), σ is related to the corresponding Gaussian
kernel, and b is uniformly sampled from [0, 2π].
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Experimental Setup

Table 1: Information of Different Datasets

Dataset Class Training Size Testing Size Features
a1a 2 1605 30956 123
svmguide1 2 3089 4000 4
splice 2 1000 2175 60
vehicle 4 500 446 18
dna 3 2000 1186 180
pendigits 10 7494 3498 16
satimage 6 4435 2000 36
usps 10 7291 2007 256
MNIST 10 60000 10000 28× 28
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Comparative Experiment

We compare FedAvgR with OneShot Zhang et al. [2015], FedAvg McMahan
et al. [2017], FedProx Li et al. [2020a] and FL+HC Briggs et al. [2020].

OneShot aggregates local models when local trainings converge.
FedAvg iteratively averages local models by nk/n.
FedProx adds the last-round’s global model to local training as
regularization based on FedAvg.
FL+HC uses hierarchical clustering to divide clients into several clusters
and applies FedAvg separately.
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Comparative Experiment

Table 2: Test Accuracy on Real-World Datasets. We run methods on each dataset 10
times, each with 300 rounds. We bold the numbers of the best method and underline
the numbers of other methods which are not significantly worse than the best one.

Dataset OneShot FedAvg FedProx FL+HC FedAvgR
a1a 76.86±0.30 84.29±0.06 84.27±0.06 81.63±0.94 84.30±0.06
svmguide1 71.50±4.21 90.95±0.86 91.19±0.84 85.66±4.48 91.77±1.01
splice 75.95±4.56 90.37±0.21 90.38±0.20 85.12±2.14 90.40±0.26
vehicle 52.31±4.36 78.61±1.08 78.58±1.06 62.24±8.12 78.82±0.98
dna 63.73±1.02 95.23±0.17 95.18±0.21 92.09±3.25 95.59±0.23
pendigits 46.70±2.32 94.87±0.58 94.85±0.59 86.81±4.58 95.12±0.48
satimage 73.07±2.39 88.83±0.41 88.46±0.31 76.72±2.96 88.93±0.39
usps 56.83±4.06 94.57±0.15 94.53±0.13 88.03±3.62 94.80±0.19
MNIST 68.80±2.06 97.26±0.09 97.24±0.07 85.13±2.23 97.34±0.06
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Impact of MMD[ρφk , ρ
φ]

We run 100 rounds on the synthetic dataset with (u, v) = (1, 1) and sample
100 points from each ρ̂φk and ρ̂φ to show the impact of MMD[ρφk , ρ

φ].
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Impacts of Different Regularizers

We run 250 rounds on the synthetic dataset with (u, v) = (0.5, 0.5) and some
real-world datasets with non-IID partitioning.

Table 3: Test Accuracy of FedAvgR with Different Regualrizers

Dataset No Regularizer ‖W ‖∗ ‖φ(Xk)‖F MMD All Regularizers
svmguide1 89.05 89.20 89.45 89.61 90.70
vehicle 77.12 77.17 77.17 77.46 78.32
dna 95.33 95.52 95.36 95.45 95.70
pendigits 95.70 95.71 95.74 95.94 95.90
usps 94.57 94.72 94.82 94.80 94.82
synthetic 95.82 96.07 96.06 96.12 96.23
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Conclusion

In this paper, we give an excess risk bound for federated learning on
non-IID data through Rademacher complexity and discrepancy
distance, analyzing the error between it and the optimal centralized
learning model. Based on our theory, we propose FedAvgR to improve
the performance of federated learning in non-IID setting, where three
regularizers are added to achieve a sharper bound. Experiments show
that our algorithm outperforms the previous methods. As the first work to
analyze the excess risk under a more general framework, our work will
provide a reference for the future study of generalization properties in
federated learning with non-IID data. Besides, the proof techniques in
this paper are helpful to the research of error analysis related to the
distributed framework.
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decentralized data. In AISTATS, volume 54, pages 1273–1282, 2017.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In ICML, volume 97, pages 4615–4625, 2019.

Anastasia Pustozerova, Andreas Rauber, and Rudolf Mayer. Training effective neural networks on structured data with federated learning. In AINA, volume
226, pages 394–406, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS, pages 1177–1184, 2007.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. Federated multi-task learning. In NIPS, pages 4424–4434, 2017.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris S. Papailiopoulos, and Yasaman Khazaeni. Federated learning with matched averaging. In ICLR,
2020a.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael G. Rabbat. Slowmo: Improving communication-efficient distributed SGD with slow momentum. In
ICLR, 2020b.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum SGD for distributed non-convex optimization. In
ICML, volume 97, pages 7184–7193, 2019.

Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Divide and conquer kernel ridge regression: a distributed algorithm with minimax optimal rates. J.
Mach. Learn. Res., 16:3299–3340, 2015.

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 32 / 33



Thank You

Author (IIE, CAS, UCAS, RUC) Federated Learning for Non-IID Data: From Theory to Algorithm PRICAI-2021 33 / 33


	Introduction
	Preliminaries and Notations
	Generalization Analysis
	Algorithm: FedAvgR
	Experiments
	Conclusion
	References

