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Abstract. Federated learning suffers from terrible generalization perfor-
mance because the model fails to utilize global information over all clients
when data is non-IID (not independently or identically distributed) par-
titioning. Meanwhile, the theoretical studies in this field are still insuffi-
cient. In this paper, we present an excess risk bound for federated learn-
ing on non-IID data, which measures the error between the model of
federated learning and the optimal centralized model. Specifically, we
present a novel error decomposition strategy, which decomposes the ex-
cess risk into three terms: agnostic error, federated error, and approxi-
mation error. By estimating the error terms, we find that Rademacher
complexity and discrepancy distance are the keys to affecting the learning
performance. Motivated by the theoretical findings, we propose FedAvgR

to improve the performance via additional regularizers to lower the excess
risk. Experimental results demonstrate the effectiveness of our algorithm
and coincide with our theory.

Keywords: Federated Learning · Non-IID · Excess Risk Bound.

1 Introduction

Federated learning (FL) [25] is a new machine learning paradigm where a large
number of clients collaboratively train a model under the coordination of a cen-
tral server. Different from centralized learning (CL), in FL setting, the raw data
of each client is stored locally, other clients and the central server have no ac-
cess to it. Instead, the global model is updated by alternately performing local
training and server aggregating. At present, FL still faces many problems [14],
one severe problem in FL is that training data is usually non-IID among clients,
and this leads to the decline of the model’s effectiveness compared to CL.

Some studies [33, 31, 28] try to solve this problem by designing new optimiza-
tion algorithms. FedAvg [25] is an efficient algorithm based on iterative model
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averaging, but it might be less accurate when dealing with non-IID data. FedProx
[15] adds a proximal term to local objectives to constrain the gap between lo-
cal models and the global model, but the convergence is slower. SCAFFOLD [9]
controls variates to reduce the variance among local updates, while it increases
communication costs. Using local momentum [38] instead of local SGD empir-
ically improves the accuracy in heterogeneous settings, but such methods also
require additional communication. FL with server momentum [35] performs bet-
ter than many existing methods including SCAFFOLD without increasing commu-
nication costs, but such methods do not consider the specific non-IID setting.
FedNova [34] was proposed to tackle objective inconsistency problem and it could
be combined with some acceleration techniques [17], while it has not taken the
distribution discrepancy into account. Another effective way is to apply cluster-
ing [30, 5] to FL, where clients are divided into several groups based on their
similarities, but the metric of clustering and the number of clusters needs to be
determined in advance.

On the contrary, there are only a few generalization analysis [21, 13] for FL
under non-IID setting. Many works have analyzed federated optimization from
the aspect of homogeneity [2, 32] or heterogeneity [36, 18], where some works
focus on the convergence of federated stochastic algorithms [7] and have made
progress in relaxing the assumptions [18]. Most theoretical works paid more
attention to the optimization problem with convergence analysis [16, 9] on non-
IID data, some of which showed that the heterogeneity of data slows down the
convergence. From the perspective of generalization, agnostic federated learning
[26] provided a new point on FL, but the target is to optimize the worst case
in the hypothesis, which often performs not well in practice, and it only focused
on the generalization error of FL. Thus, there is still a lack of generalization
analysis between FL and CL under the traditional framework, which may help
to further improve the performance of FL under non-IID setting.

In this paper, we analyze the excess risk of FL on non-IID data, which mea-
sures the gap between FL and the optimal CL, and we give the corresponding
excess risk bound. With proper error decompositions, the excess risk can be
divided into agnostic error, federated error, and approximation error, then we
further construct ingenious error decompositions to derive the upper bound of
these errors by means of Rademacher complexity [27, 1] and discrepancy dis-
tance [24, 3, 40]. Based on the theoretical analysis, we devise an effective algo-
rithm, where we introduce three regularizers to ensure the performance of FL
on non-IID data. Experimental results on the synthetic dataset and real-world
datasets show that our proposed algorithm outperforms the previous methods
and validates our theory.

The contributions of our work are summarized as follows:

– Theoretically, we give the excess risk bound between FL on non-IID data
and CL for the first time and find out the factors that affect the accuracy
decline. We give a reasonable explanation for the bound by decomposing the
excess risk into three terms: agnostic error, federated error and approxima-
tion error, where each term has a detailed analysis with complete proof.
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– Algorithmically, we propose a novel algorithm FedAvgR (Federated Aver-
aging with Regularization) to improve the performance of FL on non-IID
data, which is regularized by Rademacher complexity and discrepancy dis-
tance. Furthermore, we design a learning framework for a linear classifier
with nonlinear feature mapping, where all the parameters will be updated
automatically through back-propagation.

2 Preliminaries and Notations

There are some general notations used in this paper. Assume that there are
K clients in a FL setting, where data on the k-th client is drawn i.i.d. from
distribution ρk, data on different clients may not have the same distribution
(ρi 6= ρj), and all clients participate in each round (cross-silo FL). The global
distribution is assumed to be a mixture distribution of local distributions on allK
clients: ρ =

∑K
k=1 pkρk, where pk is the mixture weight (

∑K
k=1 pk = 1). Actually,

the mixture weight pk is unknown, so an estimated weight p̂k will be applied in
practice, which brings us the estimated global distribution ρ̃ =

∑K
k=1 p̂kρk.

In this paper, we focus on the multi-classification task. We denote the hy-
pothesis space H = {x → f(x)} consisting of labeling functions f : X → Y,
where X ⊆ Rd represents the input space and Y ⊆ RC represents the label
space, training samples (xk, yk) on the k-th client with size of nk are i.i.d.
drawn from ρk(x, y). The labeling function f is formed as f(x) = W Tφ(x),
where W ∈ RD×C , φ(x) ∈ RD and φ(·) is the feature mapping with learnable
parameters ϕ.

Let `(f(x), y) be the loss function, which is assumed to be upper bounded
by M (M > 0), and L = {`(f(x), y)|f ∈ H} be the family of loss functions on
the hypothesis H, the expected loss of FL on ρ can be described as

Eρ(f) =

K∑
k=1

pkEρk(f) =

K∑
k=1

pk

∫
X×Y

`(f(x), y)dρk(x, y),

and the corresponding empirical loss is

Êρ(f) =

K∑
k=1

pkÊρk(f) =

K∑
k=1

pk
1

nk

nk∑
i=1

`(f(xki ), yki ).

The empirical learner of FL on the estimated distribution ρ̃ is denoted by
f̃fl = arg minf∈H

∑K
k=1 p̂kÊρk(f), and we define the expected (optimal) learner

in H as f∗ = arg minf∈H Eρ(f), which minimizes the expected loss on ρ.

The performance of a learning model is usually measured by the excess risk :
Eρ(f̃fl)− Eρ(f∗). Unlike the generalization error, excess risk represents the gap
between an empirical model and the optimal model, which has not been consid-
ered recently in FL. In the following, we consider bounding this excess risk.
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3 Generalization Analysis

In this section, we will derive the excess risk bound between FL and CL.

To this end, we decompose the excess risk into agnostic error A1, federated
error A2, and approximation error A3:

Eρ(f̃fl)−Eρ(f∗) ≤ Eρ(f̃fl)− Eρ(f̂fl)︸ ︷︷ ︸
A1:=

+ Eρ(f̂fl)− Eρ(f̂cl)︸ ︷︷ ︸
A2:=

+ Eρ(f̂cl)− Eρ(f∗)︸ ︷︷ ︸
A3:=

,
(1)

where f̂fl = arg minf∈H
∑K
k=1 pkÊρk(f) denotes the empirical learner on the

unknown real distribution ρ and f̂cl = arg minf∈H
1
n

∑n
i=1 `(f(xi), yi) denotes

the empirical learner of CL.

As mentioned above, p̂k 6= pk results in the difference between f̃fl and f̂fl,
which is caused by the agnostic nature of the mixture weight. And, in CL setting,
model is trained directly on the samples {(xn, yn), ..., (xn, yn)} i.i.d. drawn from

ρ(x, y) with size of n (n =
∑K
k=1 nk).

In (1), A1 represents the difference of expected loss for FL between the es-
timated distribution and the real distribution, A2 represents the difference of
expected loss between FL and CL, and A3 represents the approximation error
of CL to the optimal solution.

3.1 Bounds of Three Error Terms

To measure the performance gap of a model on different distributed data, we
introduce the discrepancy distance [24] as follows:

discL(Q1, Q2) = sup
f∈H
|EQ1

(f)− EQ2
(f)| , (2)

where Q1 and Q2 are two different distributions.

Using Rademacher complexity and discrepancy distance, we bound A1, A2,
and A3 as follows.

Theorem 1 (Agnostic Error Bound). Assume that `(f(x), y) is λ-Lipschitz
equipped with the 2-norm, that is |`(f(x), y)− `(f(x′), y′)| ≤ λ‖f(x)− f(x′)‖2,
B = supf=WTφ(x)∈H ‖W ‖∗, where ‖·‖∗ denotes the trace norm. With probability
at least 1− δ (δ > 0), we have:

A1 ≤ 2discL(ρ̃, ρ) + 4
√

2λB

K∑
k=1

p̂k
nk

√
C‖φ(Xk)‖F + 6M

√
S(p̂||n̄) log(2/δ)

2n
,

where ‖φ(Xk)‖F =
√∑nk

i=1

〈
φ(xki ), φ(xki )

〉
, S(p̂||n̄) = χ2(p̂||n̄) + 1, χ2 denotes

the chi-squared divergence, p̂ = [p̂1, ..., p̂K ], and n̄ = 1
n [n1, ..., nK ].
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Proof. We first decompose A1 into the following parts:

A1 =Eρ(f̃fl)− Eρ̃(f̃fl) + Eρ̃(f̃fl)− Eρ̃(f̂fl)︸ ︷︷ ︸
A′

1:=

+Eρ̃(f̂fl)− Eρ(f̂fl),
(3)

According to 2, we know that Eρ(f̃fl) − Eρ̃(f̃fl) ≤ discL(ρ, ρ̃) and Eρ̃(f̂fl) −
Eρ(f̂fl) ≤ discL(ρ̃, ρ). Then, We further decompose A′1 as:

A′1 = Eρ̃(f̃fl)− Êρ̃(f̃fl)︸ ︷︷ ︸
A11:=

+ Êρ̃(f̃fl)− Êρ̃(f̂fl)︸ ︷︷ ︸
A12:=

+ Êρ̃(f̂fl)− Eρ̃(f̂fl)︸ ︷︷ ︸
A13:=

.

where A11 and A13 represent the generalization errors of f̃fl and f̂fl, respectively,
which can be bounded by weighted Rademacher complexity.

Definition 1 (Weighted Rademacher Complexity). Let H be a hypothesis
space of f defined over X , L be the family of loss functions associated to H,
n = [n1, ..., nK ] be the vector of sample sizes and p = [p1, ..., pK ] be the mixture
weight vector, the empirical weighted Rademacher complexity of L is

R̂(L,p) = Eε

[
sup
f∈H

K∑
k=1

pk
nk

nk∑
i=1

εki l(f(xki ), yki )

]
,

and the empirical weighted Rademacher complexity of H is

R̂(H,p) = Eε

[
sup
f∈H

K∑
k=1

pk
nk

nk∑
i=1

C∑
c=1

εkicfc(x
k
i )

]
,

where fc(x
k
i ) is the c-th value of f(xki ) corresponding to the C classes, εki s and

εkics are independent Rademacher variables, which are uniformly sampled from
{−1,+1}, respectively.

For any sample S = {S1, ...Sn} drawn from ρ, define Φ(S) by Φ(S) =

supf∈H(Eρ̃(f)− Êρ̃(f)). According to[26], we have

Φ(S) ≤ 2R̂(L, p̂) + 3M

√
χ2(p̂||n̄) + 1

2n
log

2

δ
. (4)

According to [8], it holds that R̂(L, p̂) ≤
√

2λR̂(H, p̂) under the Lipschitz
assumption. Applying Hölder’s inequality, we have:

R̂(H, p̂) = Eε

[
sup
f∈H

K∑
k=1

p̂k
nk
〈W k,Φk〉

]
≤ Eε

[
K∑
k=1

p̂k
nk

sup
f∈H
〈W k,Φk〉

]

≤ Eε

[
K∑
k=1

p̂k
nk

sup
f∈H
‖W k‖∗‖Φk‖F

]
≤ Eε

[
K∑
k=1

p̂k
nk
B‖Φk‖F

]

= B

K∑
k=1

p̂k
nk

Eε [‖Φk‖F ] ≤ B
K∑
k=1

p̂k
nk

√
Eε[‖Φk‖2F ].

(5)
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where W k,Φk = [
∑nk
i=1 ε

k
i1φ(xki ), ...,

∑nk
i=1 ε

k
iCφ(xki )] ∈ RD×C and 〈W k,Φk〉 =

Tr(W T
kΦk). Eε[‖Φk‖2F ] can be further bounded as follows [10]:

Eε[‖Φk‖2F ] ≤ Eε

 C∑
c=1

∥∥∥∥∥
nk∑
i=1

εkicφ(xki )

∥∥∥∥∥
2

2

 ≤ C∑
c=1

Eε

∥∥∥∥∥
nk∑
i=1

εkicφ(xki )

∥∥∥∥∥
2

2


≤

C∑
c=1

Eε

 nk∑
i,j=1

εkicε
k
jc〈φ(xki ), φ(xkj )〉

 = C‖φ(Xk)‖2F .

(6)

Based on the definition of learners, f̃fl minimizes the empirical loss on

(x, y) ∼ ρ̃, while f̂fl minimizes the empirical risk on (x, y) ∼ ρ, so it is ob-

vious that Êρ̃(f̃fl) ≤ Êρ(f̂fl). Therefore, the proof of Theorem 1 is completed.

A1 (agnostic error) is mainly caused by the gap between the estimated distri-
bution ρ̃ and the real distribution ρ, because the underlying mixture weight pk is
unknown. S(p̂||n̄) represents the distance between p̂k and the uniform mixture
weight nk

n , which gives a guidance on the choice of p̂k.

Theorem 2 (Federated Error Bound). Under the same assumptions as
Theorem 1, with probability at least 1− δ(δ > 0), we have:

A2 ≤
K∑
k=1

pk

(
discL(ρk, ρ) +

4
√

2λB

nk

√
C‖φ(Xk)‖F

)
+

K∑
k=1

pk

6M

√
log(2/δ)

2nk

 .

Proof. Note that A2 =
∑K
k=1 pk[Eρk(f̂fl)− Eρ(f̂cl)︸ ︷︷ ︸

A′
2:=

], we decompose A′2 as:

Eρk(f̂fl)− Êρk(f̂fl)︸ ︷︷ ︸
A21

+ Êρk(f̂fl)− Êρk(f̂cl)︸ ︷︷ ︸
A22

+ Êρk(f̂cl)− Eρk(f̂cl)︸ ︷︷ ︸
A23

+ Eρk(f̂cl)− Eρ(f̂cl)︸ ︷︷ ︸
A24

.

Substituting A22 into the equation of A2, due to the definition of f̂fl, we

have
∑K
k=1 pk[Êρk(f̂fl) − Êρk(f̂cl)] ≤ 0. Similar to Theorem 1, the rest parts of

A′2 can be bounded by Rademacher complexity [27] and discrepancy distance.
Therefore, the proof is completed by bounding the four parts.

A2 (federated error) is mainly caused by the FL setting. Samples on different
clients are drawn from different distributions, which results in the discrepancy
between ρk and ρ, where the CL model is directly trained on ρ.

Theorem 3 (Approximation Error Bound). Under the same assumptions
as Theorem 1, with probability 1− δ(δ > 0), we have:

A3 ≤
4
√

2λB

n

√
C‖φ(X)‖F + 3M

√
log(2/δ)

2n
,

where ‖φ(X)‖F =
√∑n

i=1〈φ(xi), φ(xi)〉.
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A3 (approximation error) is a classic excess risk bound in CL setting, which
represents the gap between an empirical learner and the optimal learner in H.

Remark 1 (Proof Novelty). 1) The excess risk bound for FL on non-IID data

can not be derived directly. To bridge f̃fl to f∗, we decompose the excess risk
into three error terms. 2) There is no available tool can be applied to bound A1

and A2 directly. Thus, we propose a two-stage error decomposition for A1 and
a novel decomposition for A2 (See proofs for details).

3.2 Excess Risk Bound

The excess risk bound is obtained by combining the above bounds together.

Theorem 4 (Excess Risk Bound). Under the same assumptions as Theorem
1, With probability at least 1 − δ (δ > 0), the excess risk bound of federated
learning on non-IID data holds as follows:

Eρ(f̂fl)− Eρ(f∗) ≤ O (G1 +G2 +G3) , (7)

where G1 = discL(ρ̃, ρ)+
K∑
k=1

p̂kB
√
C

nk
‖φ(Xk)‖F+

√
S(p̂||n̄)

n , G2 = B
√
C

n ‖φ(X)‖F+√
1
n and G3 =

K∑
k=1

pk[discL(ρk, ρ) + B
√
C

nk
‖φ(Xk)‖F +

√
1
nk

].

According to Theorem 4, to lower the excess risk, we need to reduce discL(ρk, ρ),
constrain ‖W ‖∗ and ‖φ(Xk)‖F , and at the same time reduce discL(ρ̃, ρ).

In non-IID condition, samples on different clients are drawn from different
distributions, so the gap between ρk and ρ certainly exists. Furthermore, pk is
unknown, how can we reduce discL(ρ̃, ρ)? Actually, if we reduce discL(ρk, ρ), the
differences among local distributions will become smaller, that is, the degree of
non-IID will be reduced. At this time, ρk is approximate to ρ, so p̂k has a small
effect on discL(ρ̃, ρ), especially, when ρk = ρ, whatever value we choose for p̂k,
it’s not going to make big difference to the global distribution. Therefore, we are
able to lower the excess risk by reducing discL(ρk, ρ), ‖W ‖∗ and ‖φ(Xk)‖F .

On the other hand, when φ(·) is upper bounded by κ2 and p̂k is equal to pk, if

we can reduce discL(ρk, ρ) to 0, then (7) will be O[(κB
√
C+1)

∑K
k=1 p̂k

√
1
nk

]. In

this case, if the number of samples is equal (nk = n/K, ∀k = 1, ...,K), we have
O(κB

√
KC/n), which is the convergence rate for the counterpart of distributed

learning. Moreover, if we have only one client, we have O(κB
√
C/n), which is

the convergence rate for the counterpart of centralized learning. Thus, our theory
gives a more general framework that can be applied to FL as well as distributed
learning [37] and CL, with the latter two being a special case of the former.

Remark 2 (Novelty). Few of the existing theoretical studies of FL are concerned
with the excess risk. [26] analyzed federated learning under the agnostic frame-
work, which aims to improve the performance under the worst condition, and
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this may not get the optimal solution. Also, they just give the generalization
bound of agnostic federated learning. In this paper, we analyze the excess risk
between federated learning model on non-IID data and the optimal centralized
model under a more general framework and derive the excess risk bound, which
may provide a new path for theoretical analysis of federated learning.

4 Algorithm

Motivated by the excess risk bound, we propose FedAvgR (Federated Averaging
with Regularization) to improve the performance of FL on non-IID data.

Algorithm 1 FedAvgR. K clients are indexed by k, B is the local mini-batch size, E is

the number of local epochs, η is the learning rate, F represents the objective function.

Server-Aggregate

1: initialize W 0 and ϕ0

2: for k = 1, ...,K do
3: ρ̂φk ← estimate the distribution of φ(x)

4: upload the parameters of ρ̂φk to the server
5: end for
6: get the global distribution ρ̂φ =

∑K
k=1 p̂kρ̂

φ
k

7: for each round t = 1, 2, ... do
8: for each client k do
9: W k

t+1,ϕ
k
t+1, ρ̂

φ
k ← Client-Update(k,W t,ϕt, ρ̂

φ)
10: end for
11: update the global distribution ρ̂φ

12: W t+1 ←
∑K
k=1 p̂kW

k
t+1,ϕt+1 ←

∑K
k=1 p̂kϕ

k
t+1

13: end for

Client-Update(k,W t,ϕt, ρ̂
φ)

1: draw samples Zρ̂φ from ρ̂φ

2: for epoch= 1, ..., E do
3: for (x, y) ∈ B do
4: calculate MMD[ρ̂φk , ρ̂

φ] by (x, y) and Zρ̂φ

5: F = 1
B
∑

(x,y)∈B `(f(x), y) + α‖W ‖∗ + β‖φ(X)‖F + γMMD[ρ̂φk , ρ̂
φ]

6: W k
t+1 ←W t − η∇W tF ,ϕ

k
t+1 ← ϕt − η∇ϕtF

7: end for
8: ρ̂φk ← estimate the distribution of φ(x)
9: end for

4.1 Regularization

Based on Theorem 4, we can constrain ‖W ‖∗, ‖φ(Xk)‖F , and discL(ρk, ρ) by
adding them to the objective function as regularizers [11, 12].

Unlike ‖W ‖∗ and ‖φ(Xk)‖F , the discrepancy distance discL(ρk, ρ) is not an
explicit variable-dependent term, so we need to find an approach to quantify it.
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Another problem is that the local distribution ρk won’t change during training,
so we shall reduce the discrepancy after feature mapping. In other words, we can
reduce discL(ρφk , ρ

φ) instead of discL(ρk, ρ), where ρφk and ρφ are respectively
the local feature distribution on client k and global feature distribution.

We choose MMD (Maximum Mean Discrepancy) [4] to measure the distance
between different distributions Q1 and Q2, which is formed as MMD[Q1, Q2] =
supf∈H (EQ1

[f(x)]− EQ2
[f(x)]). Assume that H is a complete inner product

space of f , then H can be termed a reproducing kernel Hilbert space when the
continuous linear point evaluation mapping f → f(x) exists for all x ∈ X . Thus,
we can use inner product to represent f(x): f(x) = 〈f, φ(x)〉H, so it holds that
MMD[Q1, Q2] = ‖EQ1

[φ(x)],EQ2
[φ(x′)]‖H, and the related expansion is:

1

m2

m∑
i,j=1

〈φ(xi), φ(xj)〉H +
1

n2

n∑
i,j=1

〈φ(x′i), φ(x′j)〉H −
2

mn

m,n∑
i,j=1

〈φ(xi), φ(x′j)〉H,

where m and n denotes the number of samples on Q1 and Q2, respectively.
Taking MMD[ρφk , ρ

φ] as a regularizer with ‖W ‖∗ and ‖φ(Xk)‖F , the objec-
tive function on the k-th client is

min
W ,ϕ

1

nk

nk∑
i=1

`(f(xki ), yki ) + α‖W ‖∗ + β‖φ(Xk)‖F + γMMD[ρφk , ρ
φ].

4.2 Learning Framework

The procedure of FedAvgR is listed in Algorithm 1. First, the server sends the
initial parameters to all clients, then we estimate the empirical local distribution
ρ̂φk and upload them to the server to get the empirical global distribution ρ̂φ.
Next, at each communication round, each client updates the model parameters
and reestimates ρ̂φk locally. Then, the server aggregates local updates and renews

ρ̂φ based on ρ̂φk , which will be sent to all clients again [23].

In order to calculate MMD[ρφk , ρ
φ] in client-update, we first drawn samples

Zρ̂φ from ρ̂φ, and then calculate MMD[ρφk , ρ
φ] by φ(xk) and Zρ̂φ . In server-

aggregate, we choose p̂k = nk/n to aggregate the updates, so that S(p̂||n̄) can

be minimized. Particularly, when discL(ρφk , ρ
φ) is close to 0, the learning problem

degenerates into the distributed learning, where nk/n is widely used.
We design a learning framework (Figure 1) for linear classifier to update all

the parameters automatically through back-propagation, where W Tφ(x) can be
treated as a fully-connected neural network with one hidden layer and we only
need to initialize the parameters. Besides, we apply D feature mappings with dif-
ferent parameters to reduce variance. Moreover, this framework is generalizable,
where φ(·) can be replaced by neural network, kernel method [22], etc.

5 Experiment

In this section, we will introduce our experimental setup and conduct extensive
experiments to demonstrate our theory and show the effectiveness of FedAvgR.
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Fig. 1. Architecture of local learning framework

5.1 Experimental Setup

We evaluate our algorithm and make further analysis on some real-world datasets
and the synthetic dataset. All the experiments are trained on a Linux x86 64
server (CPU: Intel(R) Xeon(R) Silver 4214 (RAM: 196 GB) / GPU: NVIDIA
GeForce RTX-2080ti).

The synthetic dataset in our experiment is generated related to the method
in [16], where the number of samples nk on client k follows a power law. We
choose three binary-classification datasets (a1a, svmguide1 and splice) and six
multi-classification datasets (vehicle, dna, pendigits, satimage, usps and MNIST)
from LIBSVM [6]. We apply the partitioning method related to [25] to all these
datasets to get non-IID data. We sort each dataset by the label and divide it
into N/Ns shards of size Ns, where N is the total number of samples, then we
assign each client 2 shards. The detailed information for the real-world datasets
[6] is listed in Table 1, where the training sets and the test sets are officially
splited except vehicle.

Table 1. Information of Different Datasets

Dataset Class Training Size Testing Size Features

a1a 2 1605 30956 123
svmguide1 2 3089 4000 4
splice 2 1000 2175 60
vehicle 4 500 446 18
dna 3 2000 1186 180
pendigits 10 7494 3498 16
satimage 6 4435 2000 36
usps 10 7291 2007 256
MNIST 10 60000 10000 28× 28

In the following experiments, we use random Fourier feature to do the fea-
ture mapping. According to [29], random feature mapping can be formed as√

2 cos(ωTx + b), where ω is sampled from N (0, σ2), σ is related to the corre-
sponding Gaussian kernel, and b is uniformly sampled from [0, 2π].
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5.2 Analysis of FedAvgR

In this part, we will discuss the effects of different components on the perfor-
mance of our algorithm. We set the feature dimension as 100, the minimum
number of local samples as 100, and the number of clients as 10.

(a) Round 0: 0.766 (b) Round 30: 0.098

(c) Round 60: 0.034 (d) Round 100: 0.019

Fig. 2. Distributions Changes via Training: Black points are sampled from ρ̂φ, and
others are sampled from ρ̂φks, the corresponding discrepancy distance is labeled at the
bottom of each figure.

Impact of MMD[ρφk , ρ
φ] MMD[ρφk , ρ

φ] is used to match local distributions to
the global distribution, which is the key component to solve the non-IID problem.
We run 100 rounds on the synthetic dataset with (u, v) = (1, 1) and sample 100

points from each ρ̂φk and ρ̂φ. To show its impact, we visualize the distributions
changes via training process in Figure 2, where all the points are transformed to
2D by PCA (Principal Component Analysis) and discL(ρφk , ρ

φ) labeled in Figure
2 is calculated by the distance among the centroids of each group of points. (a)
shows the distributions after initializing by random feature, we find that there
exists a certain distance between ρ̂φk and ρ̂φ. (b) shows the distributions after 30
rounds training, and (c) shows the result after 60 rounds training, it is apparent

that discL(ρ̂φk , ρ̂
φ) is getting smaller. (d) shows the distributions after 100 rounds,

where the local distributions of all clients converge toward the global distribution,
which can reduce the negative impact of non-IID, and this also demonstrate the
effectiveness of FedAvgR.
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Impacts of Different Regularizers We conduct an experiment to analyze
the three regularizers. We run 250 rounds on the synthetic dataset with (u, v) =
(0.5, 0.5) and some real-world datasets with non-iid partitioning. As shown in
Table 2, FedAvgR mostly performs the best, and FedAvgR without regularization
(equal to FedAvg) performs the worst. The performances are close when FedAvgR

only contains ‖W ‖∗ or ‖φ(Xk)‖F , because both of them are designed to limit the

Rademacher complexity. The performance of FedAvgR only with MMD[ρφk , ρ
φ]

is only second to FedAvgR with all three regularizers on most datasets, which
exactly demonstrates our theory that when the gap between ρk and ρ becomes
smaller, the performance of the model will be improved.

Table 2. Test Accuracy of FedAvgR with Different Regualrizers

Dataset No Regularizer ‖W ‖∗ ‖φ(Xk)‖F MMD All Regularizers

svmguide1 89.05 89.20 89.45 89.61 90.70
vehicle 77.12 77.17 77.17 77.46 78.32
dna 95.33 95.52 95.36 95.45 95.70
pendigits 95.70 95.71 95.74 95.94 95.90
usps 94.57 94.72 94.82 94.80 94.82
synthetic 95.82 96.07 96.06 96.12 96.23

5.3 Comparison with Other Methods

In this part, we compare FedAvgR with OneShot [39], FedAvg [25], FedProx [15]
and FL+HC [5] on several LIBSVM datasets. The regularization parameters of
FedAvgR are selected in α ∈ {10−8, 10−7, ..., 10−4}, β ∈ {10−6, 10−5, ..., 10−2},
and γ ∈ {10−4, 10−3, ..., 10−1} through 3-folds cross-validation [20, 19], the regu-
larization parameters of FedProx are selected in {10−4, 10−3, ..., 10−1}, and the
number of clusters is set as 2 in FL+HC. The top-1 accuracy is used to evaluate
the performance, and the communication round is set as 300 with 10 epochs on
each client per round. We implement all the methods based on Pytorch and use
Momentum as optimizer with 10 instances in a mini-batch for training. We run
all the methods on each dataset 10 times with different random seeds, and we
apply t-test to estimate the statistical significance.

Instead of partitioning the test samples to each client, we test all the algo-
rithms with the entire test set of each dataset, because our target is to learn a
global model that has the best generalized performance on the global distribu-
tion ρ. OneShot aggregates local models when local trainings converge, FedAvg
iteratively averages local models by nk/n, FedProx adds the last-round’s global
model to local training as regularization based on FedAvg, and FL+HC uses hi-
erarchical clustering to divide clients into several clusters and applies FedAvg

separately.
According to the results in Table 3, FedAvgR shows the best performances on

all datasets, which means that the use of three regularizers brings notable im-
provement coincides with our theoretical analysis. OneShot, FedAvg and FedProx
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do not consider or explicitly deal with the differences among local distributions,
which limits the model’s performance on non-IID data, while FedAvgR reduces
the discrepancies between ρ̂φks and ρ̂φ. FL+HC is a personalized method for scenar-
ios where each client has its own test samples. In particular, when the number
of clusters is 1, FL+HC is equal to FedAvg.

On most datasets, FedAvgR is significantly better than other methods with
confidence at level 95%. However, on a1a and splice, the advantage of our algo-
rithm is not significant. The reason is that the datasets are not balanced, where
the number of training samples is far less than the number of test samples.

Table 3. Test Accuracy on Real-World Datasets. We run methods on each dataset 10
times, each with 300 rounds. We bold the numbers of the best method and underline
the numbers of other methods which are not significantly worse than the best one.

Dataset OneShot FedAvg FedProx FL+HC FedAvgR

a1a 76.86±0.30 84.29±0.06 84.27±0.06 81.63±0.94 84.30±0.06
svmguide1 71.50±4.21 90.95±0.86 91.19±0.84 85.66±4.48 91.77±1.01
splice 75.95±4.56 90.37±0.21 90.38±0.20 85.12±2.14 90.40±0.26
vehicle 52.31±4.36 78.61±1.08 78.58±1.06 62.24±8.12 78.82±0.98
dna 63.73±1.02 95.23±0.17 95.18±0.21 92.09±3.25 95.59±0.23
pendigits 46.70±2.32 94.87±0.58 94.85±0.59 86.81±4.58 95.12±0.48
satimage 73.07±2.39 88.83±0.41 88.46±0.31 76.72±2.96 88.93±0.39
usps 56.83±4.06 94.57±0.15 94.53±0.13 88.03±3.62 94.80±0.19
MNIST 68.80±2.06 97.26±0.09 97.24±0.07 85.13±2.23 97.34±0.06

6 Conclusion

In this paper, we give an excess risk bound for federated learning on non-IID
data through Rademacher complexity and discrepancy distance, analyzing the
error between it and the optimal centralized learning model. Based on our theory,
we propose FedAvgR to improve the performance of federated learning in non-
IID setting, where three regularizers are added to achieve a sharper bound.
Experiments show that our algorithm outperforms the previous methods. As
the first work to analyze the excess risk under a more general framework, our
work will provide a reference for the future study of generalization properties in
federated learning with non-IID data. Besides, the proof techniques in this paper
are helpful to the research of error analysis related to the distributed framework.
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