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Introduction
The generalization performance of kernel methods is
largely determined by the kernel, but spectral rep-
resentations of stationary kernels are both input-
independent and output-independent, which limits
their applications on complicated tasks.
In this paper, to achieve better performance ability
for kernel methods, we propose an efficient algorithm,
namely Automated Spectral Kernel Learning (ASKL),
learning suitable kernels and model weights together.
1. Core Idea: Spectral kernel representations +
Rademacher complexity.
2. Algorithmic contributions:
(1) non-stationary kernels to obtain input-dependent
features
(2) backpropagation w.r.t the objective to make fea-
tures output-dependent
(3) regularization terms to achieve sharper general-
ization error bounds
3. Theoretical contributions:
Based on Rademacher complexity theory, we
explore how the feature mappings affect the perfor-
mance and suggests ways to refine the algorithm.

Problem Definition
In ordinary supervised learning settings, training
samples {(xi,yi)ni=1} are drawn i.i.d. from a fixed
but unknown distribution ρ over X × Y, where X =
Rd is the input space and Y ⊆ RK is the output space
in single-valued (K = 1) or vector-valued (K > 1)
forms. The goal is to learn an estimator f : X → Y,
which outputs K predictive labels. We define a stan-
dard hypothesis space for kernel methods

H =
{
x→ f(x) = W Tφ(x)

}
,

where W ∈ RD×K is the model weight, φ(x) :
Rd → RD is a nonlinear feature mapping. For
kernel methods, φ(x) is an implicit feature map-
ping associated with a Mercer kernel k(x,x′) =
〈φ(x), φ(x′)〉. To improve the computational effi-
ciency but also retain favorable statistical properties,
random Fourier features were proposed to approxi-
mate kernel with explicit feature mappings φ(x) via
k(x,x′) ≈ 〈φ(x), φ(x′)〉.
In statistical learning theory, the supervised learning
problem is to minimize the expected loss on X × Y

inf
f∈H
E(f), E(f) =

∫
X×Y

`(f(x),y) dρ(x,y),

where ` is a loss function related to specific tasks.

Learning Framework
Based on Yaglom’s theorem, the nonlinear feature
mapping φ : Rd → RD adopts Monte Carlo approxi-
mation via inverse Fourier transform

k(x,x′) =

∫
Rd×Rd

Eω,ω′(x,x′)µ(dω, dω′)

= Eω,ω′∼s
[
Eω,ω′(x,x′)

]
= Eω,ω′∼s

1

4

[
cos(ωTx− ω′Tx′) + cos(ω′Tx− ωTx′)

+ cos(ωTx− ωTx′) + cos(ω′Tx− ω′Tx′)
]

≈ 1

4D

D∑
i=1

[
cos(ωTi x− ω′Ti x′) + cos(ω′Ti x− ωTi x

′)

+ cos(ωTi x− ωTi x
′) + cos(ω′Ti x− ω′Ti x′)

]
= 〈φ(x), φ(x′)〉

where (ωi,ω
′
i)
D
i=1

i.i.d.∼ s(ω,ω′), the phase vectors
b, b′ are drawn uniformly from [0, 2π]D and

φ(x) =
1√
2D

[
cos(ΩTx+ b) + cos(Ω′Tx+ b′)

]
.

The trace norm ‖W ‖∗ and the squared Frobenius
norm ‖φ(X)‖2F exerts constraints on updating model
weights W and frequency matrices Ω,Ω′. In this
paper, we put two additional regularization terms
into the ERM

argmin
W ,Ω,Ω′

1

n

n∑
i=1

`(f(xi),yi) + λ1‖W ‖∗ + λ2‖φ(X)‖2F ,

where both feature mappings φ(X) ∈ RD×n on all
data and f(xi) = W Tφ(xi) ∈ RD use the non-
stationary spectral representation.

Generalization Analysis
Definition 1. The empirical Rademacher complex-
ity of hypothesis space H is

R̂(H) = 1

n
Eε

[
sup
f∈H

n∑
i=1

K∑
k=1

εikfk(xi)

]
,

where fk(xi) is the k-th value of the estimator f(xi)
with K outputs and εiks are n × K independent
Rademacher variables.

Theorem 1 (Excess Risk Bound). Assume that B =
supf∈H ‖W ‖∗ < ∞ and assume the loss function `

is L-Lipschitz for RK , with probability at least 1− δ,
the excess risk bound holds

E(f̂n)− E(f∗) ≤ 4
√
2LR̂(H) +O

(√ log 1/δ

n

)
,

where f∗ ∈ H is the most accurate estimator in the
hypothesis space, f̂n is the empirical estimator and
the empirical Rademacher complexity is

R̂(H) ≤ B

n

√√√√K

n∑
i=1

〈φ(xi), φ(xi)〉

=
B

n

√√√√K

D

n∑
i=1

D∑
j=1

1

2

[
cos
(
(ωj − ω′j)

Txi
)
+ 1
]
.

1. The Influence of Non-Stationary Kernels.
k(xi,xi) = cos(ωT (xi − xi)) = 1, thus the trace of
kernel matrix

∑n
i=1 k(xi,xi) = n, which corresponds

to the worst cases. While for non-stationary kernels,
k(xi,xi) = cos((ω − ω′)Txi) ∈ [−1, 1].
2. Minimize the Trace Norm ‖W ‖∗. The conver-
gence rate B = supf∈H ‖W ‖∗ <∞ is also dependent
on a constant B, that is the supremum of trace norm
‖W ‖∗ in terms of the specific hypothesis space.
3. Minimize the Squared Frobenius Norm
‖φ(X)‖2F . Rademacher complexity is bounded by
the trace of the kernel

n∑
i=1

〈φ(xi), φ(xi)〉 =
n∑
i=1

‖φ(xi)‖22 = ‖φ(X)‖2F .

Experimental Results
SK NSK SKL NSKL ASKL

Accuracy(↑)

segment 89.93±2.12 90.15±2.08 94.58±1.86 94.37±0.81 95.02±1.54
satimage 74.54±1.35 75.15±1.38 83.61±1.08 83.74±1.34 85.32±1.45
USPS 93.19±2.84 93.81±2.13 95.13±0.91 95.27±1.65 97.76±1.14
pendigits 96.93±1.53 97.39±1.41 98.19±2.30 98.28±1.68 99.06±1.26
letter 76.50±1.21 78.21±1.56 93.60±1.14 94.66±2.21 95.70±1.74
porker 49.80±2.11 51.85±0.97 54.27±2.72 54.69±1.68 54.85±1.28
shuttle 98.17±2.81 98.21±1.46 98.87±1.42 98.74±1.07 98.98±0.94
MNIST 96.03±2.21 96.45±2.16 96.67±1.61 98.03±1.16 98.26±1.78

RMSE(↓)

abalone 10.09±0.42 9.71±0.28 8.35±0.28 7.85±0.42 7.88±0.16
space_ga 11.86±0.26 11.58±0.42 11.40±0.18 11.39±0.46 11.34±0.27
cpusmall 2.77±0.71 2.84±0.38 2.56±0.72 2.57±0.63 2.42±0.48
cadata 50.31±0.92 51.47±0.32 47.67±0.33 47.71±0.30 46.34±0.23


