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Abstract
Graph-based semi-supervised learning is one of
the most popular and successful semi-supervised
learning approaches. Unfortunately, it suffers
from high time and space complexity, at least
quadratic with the number of training samples.
In this paper, we propose an efficient graph-
based semi-supervised algorithm with a sound
theoretical guarantee. The proposed method
combines Nystrom subsampling and precondi-
tioned conjugate gradient descent, substantially
improving computational efficiency and reduc-
ing memory requirements. Extensive empiri-
cal results reveal that our method achieves the
state-of-the-art performance in a short time even
with limited computing resources.
1. Core Idea : LapRLS + Nyström + PCG.

2. Contributions
(1) Scalable Algorithm with O(n) space and
O(n1.5) time.
(2) Theoretical Guarantee: Excess risk bounds
with convergence rate O( 1√

m
).

Motivation
With squared loss function, the semi-supervised
manifold regulariztion becomes LapRLS with a
closed-form solution

α̂ = (JK+ λAI+ λILK)−1yn, (1)

where Kij = K(xi,xj) is n × n kernel matrix
on train data, J = diag(1, · · · , 1, 0, · · · , 0) with
the first m diagonal entries as 1 and the rest 0,
and yn = [y1, y2, · · · , ym, 0, · · · , 0]T with corre-
sponding m labels and the rest filled by 0.
But LapRLS is not feasible to handle with large
scale training data, due to its scalability issues:
(1) Space complexity: O(n2).
(2) Time complexity: O(n3).

LapRLS with Nyström
Consider a smaller hypothesis space Hs

Hs = {f ∈ H|f =
s∑
i=1

αiK(xi, ·),α ∈ Rs},

where s ≤ n and xs = (x̃1, · · · , x̃s) are Nyström
centers selected by uniform subsampling from
the training set. The solution of LapRLS (1)
over the space Hs is in the form:

α = (KT
msKms + λAKss + λIK

T
nsLKns︸ ︷︷ ︸

H

)†KT
msy︸ ︷︷ ︸
z

,

where H† denotes the Moore-Penorse pseudoin-
verse, (Kms)ij = K(xi, x̃j) with i ∈ {1, · · · ,m}
and j ∈ {1, · · · , s}, (Kss)kj = K(x̃k, x̃j) with
k, j ∈ {1, · · · , s} and y = [y1, · · · , ym]T ∈ Rm.

Experimental Results
dataset sample size RLS-CG LapRLS-CG LapRLS-PCG Nyström-CG Nyström-PCG

space_ga 3107 1.251±0.004 1.210±0.004 1.210±0.004 1.210±0.004 1.210±0.004
phishing 11055 0.426±0.049 0.294±0.005 0.273±0.007 0.295±0.005 0.275±0.008
a8a 22696 0.702±0.002 0.664±0.002 0.664±0.002 0.664±0.002 0.664±0.002
w7a 24692 0.291±0.002 0.283±0.002 0.283±0.002 0.284±0.002 0.284±0.002
a9a 32561 0.698±0.005 0.664±0.000 0.664±0.002 0.664±0.000 0.664±0.002
ijcnn1 49990 0.434±0.005 0.389±0.002 0.389±0.002 0.393±0.001 0.463±0.001
cod-rna 59535 0.686±0.002 / / 0.614±0.001 0.614±0.001
connect-4 67757 0.781±0.015 / / 0.739±0.002 0.739±0.002
skin_nonskin 245057 3.119±0.023 / / 2.620±0.043 2.620±0.043
YearPrediction 463715 0.198±0.001 / / 0.187±0.001 0.187±0.001

Table 1: Comparison of average root mean square error between Nyström-PCG and RLS-CG, LapRLS-CG,
LapRLS-PCG, Nyström LapRLS-CG. We bold the best results and underline the results of the other methods
which are not significantly worse than the best one.

RLS-CG LapRLS-CG LapRLS-PCG Nyström-CG Nyström-PCG
iter time iter time iter time iter time iter time

space_ga 11 0.004 23 1.220 5 0.569 23 0.113 2 0.016
phishing 74 0.031 300 24.20 56 8.210 300 2.470 3 0.045
a8a 100 0.068 50 189.1 3 20.98 50 44.71 1 4.370
w7a 13 0.072 32 143.2 2 9.683 213 107.7 1 2.252
a9a 300 0.529 64 1699 3 30.30 65 70.40 1 4.034
ijcnn1 242 8.204 57 2154 9 72.41 53 108.8 5 4.186
cod-rna 96 7.178 / / / / 55 134.6 7 8.154
connect-4 103 11.07 / / / / 154 186.5 10 4.220
skin_nonskin 43 91.39 / / / / 65 1490 3 40.05
YearPrediction 37 236.5 / / / / 94 2479 2 116.1

Table 2: Comparison of average number of iterations and running time (seconds).

CG with Preconditioning

Hα = z → P−1Hα = P−1z.

The number of iterations for preconditioning
methods depends on the condition number
cond(P−1H), thus the preconditioner needs to
be approximate to H. To obtain a smaller con-
dition number but also avoid inefficient compu-
tation, we define two preconditioners:
(1) m ≤

√
n

P = KT
msKms + λAKss +

λIn
2

s2
KssLssKss. (2)

(2) m >
√
n

P =
m

s
KT
ssKss + λAKss +

λIn
2

s2
KssLssKss. (3)

To accelerate computation, Hα is decomposed
into a series of matrix-vector multiplications

Hα = KT
ms(Kmsα) + λAKssα+ λIK

T
ns(L(Knsα)). (4)

Algorithm
Algorithm 1 Nyström LapRLS with PCG
(Nyström-PCG)

Require: m labeled samples {(xi, yi)}mi=1, n −
m unlabeled samples {xj}nj=m+1. Parame-
ters: λA, λI , kernel method K and subsam-
pling size s.

Ensure: coefficients α
1: Construct Laplacian graph matrix L.
2: Select s Nyström centers with uniform sam-

pling from training set {x̃1, · · · , x̃s} ∈
{x1, · · · ,xn}.

3: Calculate inverse of the preconditioner P−1
(2) or (3).

4: Use any PCG solver to solve P−1Hα =
P−1z with calculating Hα by Eq. (4) and
performing matrix multiplication in blocks.

Theoretical Analysis
Theorem 1 (Simple version). Under common
assumptions and

s ≥ O(
√
n) and t ≥ O(logm)

then the following excess risk bound holds with
high probability,

E(f̂sλ,t)− E(fH) ≤ O(
1√
m
).

Technical challenges:

• Multi-penalty regularization. [1]

• Integral operator for Nyström. [2]

• Convergence of PCG. [3]

The complexity:

• Space complexity: O(s2) = O(n).

• Time complexity: O(nst+s3t) = O(n
√
n).

Estimators Time Space
RLS-Direct O(m3) O(m2)
LapRLS-Direct O(n3) O(n2)
LapRLS-CG O(n2.5) O(n2)
LapRLS-PCG O(n2) O(n2)
Nyström-Direct O(n2) O(n)
Nyström-CG O(n1.75) O(n)
Nyström-PCG O(n1.5) O(n)
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