Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis

Jian Li, Yong Liu^{*}, Rong Yin, and Weiping Wang {lijian9026, liuyong, yinrong, wangweiping}@iie.ac.cn

Abstract

Graph-based semi-supervised learning is one of the most popular and successful semi-supervised learning approaches. Unfortunately, it suffers from high time and space complexity, at least quadratic with the number of training samples. In this paper, we propose an efficient graphbased semi-supervised algorithm with a sound theoretical guarantee. The proposed method combines Nystrom subsampling and preconditioned conjugate gradient descent, substantially improving computational efficiency and reduc-

CG with Preconditioning

$$\mathbf{H}\boldsymbol{\alpha} = \mathbf{z} \quad \rightarrow \quad \mathbf{P}^{-1}\mathbf{H}\boldsymbol{\alpha} = \mathbf{P}^{-1}\mathbf{z}.$$

The number of iterations for preconditioning methods depends on the condition number $cond(\mathbf{P}^{-1}\mathbf{H})$, thus the preconditioner needs to be approximate to \mathbf{H} . To obtain a smaller condition number but also avoid inefficient computation, we define two preconditioners: $(1) \ m \leq \sqrt{n}$

中國科学院信息工程研究所 INSTITUTE OF INFORMATION ENGINEERING, CAS

Theoretical Analysis

Theorem 1 (Simple version). Under common assumptions and

$$s \ge \mathcal{O}(\sqrt{n})$$
 and $t \ge \mathcal{O}(\log m)$

then the following excess risk bound holds with high probability,

 $\mathcal{E}(\widehat{f}_{\lambda,t}^s) - \mathcal{E}(f_{\mathcal{H}}) \le \mathcal{O}(\frac{1}{\sqrt{m}}).$

Technical challenges:

ing memory requirements. Extensive empirical results reveal that our method achieves the state-of-the-art performance in a short time even with limited computing resources.
1. Core Idea : LapRLS + Nyström + PCG.

 $\mathbf{P} = \mathbf{K}_{ms}^T \mathbf{K}_{ms} + \lambda_A \mathbf{K}_{ss} + \frac{\lambda_I n^2}{c^2} \mathbf{K}_{ss} \mathbf{L}_{ss} \mathbf{K}_{ss}.$ (2) (2) $m > \sqrt{n}$ $\mathbf{P} = \frac{m}{s} \mathbf{K}_{ss}^T \mathbf{K}_{ss} + \lambda_A \mathbf{K}_{ss} + \frac{\lambda_I n^2}{s^2} \mathbf{K}_{ss} \mathbf{L}_{ss} \mathbf{K}_{ss}.$ (3) To accelerate computation, $H\alpha$ is decomposed into a series of matrix-vector multiplications $\mathbf{H}\boldsymbol{\alpha} = \mathbf{K}_{ms}^{T}(\mathbf{K}_{ms}\alpha) + \lambda_{A}\mathbf{K}_{ss}\alpha + \lambda_{I}\mathbf{K}_{ns}^{T}(\mathbf{L}(\mathbf{K}_{ns}\alpha)). \quad (4)$

Algorithm

Algorithm 1 Nyström LapRLS with PCG (Nyström-PCG)

Require: *m* labeled samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^m$, n - m unlabeled samples $\{\mathbf{x}_j\}_{j=m+1}^n$. Parameters: λ_A, λ_I , kernel method *K* and subsampling size *s*.

Ensure: coefficients α

1: Construct Laplacian graph matrix **L**.

- Multi-penalty regularization. [1]
- Integral operator for Nyström. [2]
- Convergence of PCG. [3]

The complexity:

- Space complexity: $\mathcal{O}(s^2) = \mathcal{O}(n)$.
- Time complexity: $\mathcal{O}(nst+s^3t) = \mathcal{O}(n\sqrt{n}).$

Estimators	Time	Space
RLS-Direct	$\mathcal{O}(m^3)$	$\mathcal{O}(m^2)$
LapRLS-Direct	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$
LapRLS-CG	$\mathcal{O}(n^{2.5})$	$\mathcal{O}(n^2)$
LapRLS-PCG	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Nyström-Direct	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
Nyström-CG	$\mathcal{O}(n^{1.75})$	$\mathcal{O}(n)$
Nyström-PCG	$\mathcal{O}(n^{1.5})$	$\mathcal{O}(n)$

References

[1] Abhishake Rastogi and Sivananthan Sampath. Manifold regularization based on nystr {\" o} m type sub-

Motivation

With squared loss function, the semi-supervised manifold regularization becomes LapRLS with a closed-form solution

 $\widehat{\boldsymbol{\alpha}} = (\mathbf{J}\mathbf{K} + \lambda_A \mathbf{I} + \lambda_I \mathbf{L}\mathbf{K})^{-1} \mathbf{y}_n, \qquad (1)$

where $\mathbf{K}_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ is $n \times n$ kernel matrix on train data, $\mathbf{J} = \text{diag}(1, \dots, 1, 0, \dots, 0)$ with the first m diagonal entries as 1 and the rest 0, and $\mathbf{y}_n = [y_1, y_2, \dots, y_m, 0, \dots, 0]^T$ with corresponding m labels and the rest filled by 0. But LapRLS is not feasible to handle with large scale training data, due to its scalability issues: (1) Space complexity: $\mathcal{O}(n^2)$. (2) Time complexity: $\mathcal{O}(n^3)$.

LapRLS with Nyström

Consider a smaller hypothesis space \mathcal{H}_s

- 2: Select *s* Nyström centers with uniform sampling from training set $\{\widetilde{\mathbf{x}}_1, \cdots, \widetilde{\mathbf{x}}_s\} \in \{\mathbf{x}_1, \cdots, \mathbf{x}_n\}.$
- 3: Calculate inverse of the preconditioner \mathbf{P}^{-1} (2) or (3).
- 4: Use any PCG solver to solve $\mathbf{P}^{-1}\mathbf{H}\boldsymbol{\alpha} = \mathbf{P}^{-1}\mathbf{z}$ with calculating $\mathbf{H}\boldsymbol{\alpha}$ by Eq. (4) and performing matrix multiplication in blocks.

sampling. arXiv preprint arXiv:1710.04872, 2017.

- [2] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. In Advances in Neural Information Processing Systems 28 (NIPS), pages 1657–1665, 2015.
- [3] Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In Advances in Neural Information Processing Systems 30 (NIPS), pages 3888–3898, 2017.

Experimental Results								
dataset	sample size	RLS-CG	LapRLS-CG	LapRLS-PCG	Nyström-CG	Nyström-PCG		
space_ga	3107	$1.251{\pm}0.004$	$1.210{\pm}0.004$	$1.210{\pm}0.004$	$1.210{\pm}0.004$	$1.210{\pm}0.004$		
phishing	11055	$0.426 {\pm} 0.049$	$0.294{\pm}0.005$	$0.273{\pm}0.007$	$0.295 {\pm} 0.005$	$0.275 {\pm} 0.008$		
a8a	22696	$0.702 {\pm} 0.002$	$0.664{\pm}0.002$	$0.664{\pm}0.002$	0.664 ± 0.002	$0.664 {\pm} 0.002$		
w7a	24692	$0.291{\pm}0.002$	$0.283{\pm}0.002$	$0.283{\pm}0.002$	0.284 ± 0.002	$0.284{\pm}0.002$		
a9a	32561	$0.698 {\pm} 0.005$	$0.664{\pm}0.000$	$0.664{\pm}0.002$	$0.\overline{664{\pm}0.000}$	$0.\overline{664{\pm}0.002}$		
ijcnn1	49990	$0.434{\pm}0.005$	$0.389{\pm}0.002$	$0.389{\pm}0.002$	$0.393 {\pm} 0.001$	$0.463 {\pm} 0.001$		
cod-rna	59535	$0.686 {\pm} 0.002$	/	/	0.614 ± 0.001	0.614 ± 0.001		
connect-4	67757	$0.781 {\pm} 0.015$			$0.739{\pm}0.002$	$0.739{\pm}0.002$		
skin nonskin	245057	$3.119 {\pm} 0.023$	/	/	$2.620{\pm}0.043$	$2.620 {\pm} 0.043$		
YearPrediction	463715	$0.198 {\pm} 0.001$	/	/	$0.187{\pm}0.001$	$0.187{\pm}0.001$		

$$\mathcal{H}_s = \{ f \in \mathcal{H} | f = \sum_{i=1}^s \alpha_i K(\mathbf{x}_i, \cdot), \boldsymbol{\alpha} \in \mathbb{R}^s \},\$$

where $s \leq n$ and $\mathbf{x}_s = (\tilde{\mathbf{x}}_1, \cdots, \tilde{\mathbf{x}}_s)$ are Nyström centers selected by uniform subsampling from the training set. The solution of LapRLS (1) over the space \mathcal{H}_s is in the form:

 $\boldsymbol{\alpha} = (\underbrace{\mathbf{K}_{ms}^{T}\mathbf{K}_{ms} + \lambda_{A}\mathbf{K}_{ss} + \lambda_{I}\mathbf{K}_{ns}^{T}\mathbf{L}\mathbf{K}_{ns}}_{\mathbf{H}})^{\dagger}\underbrace{\mathbf{K}_{ms}^{T}\mathbf{y}}_{\mathbf{z}},$

where \mathbf{H}^{\dagger} denotes the Moore-Penorse pseudoinverse, $(\mathbf{K}_{ms})_{ij} = K(\mathbf{x}_i, \widetilde{\mathbf{x}}_j)$ with $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, s\}$, $(\mathbf{K}_{ss})_{kj} = K(\widetilde{\mathbf{x}}_k, \widetilde{\mathbf{x}}_j)$ with $k, j \in \{1, \dots, s\}$ and $\mathbf{y} = [y_1, \dots, y_m]^T \in \mathbb{R}^m$. **Table 1:** Comparison of average root mean square error between Nyström-PCG and RLS-CG, LapRLS-CG, LapRLS-PCG, Nyström LapRLS-CG. We bold the best results and underline the results of the other methods which are not significantly worse than the best one.

	RLS-CG		LapRLS-CG		LapRLS-PCG		Nyström-CG		Nyström-PCG	
	iter	time	iter	time	iter	time	iter	time	iter	time
space_ga	11	0.004	23	1.220	5	0.569	23	0.113	2	0.016
phishing	74	0.031	300	24.20	56	8.210	300	2.470	3	0.045
a8a	100	0.068	50	189.1	3	20.98	50	44.71	1	4.370
w7a	13	0.072	32	143.2	2	9.683	213	107.7	1	2.252
a9a	300	0.529	64	1699	3	30.30	65	70.40	1	4.034
ijcnn1	242	8.204	57	2154	9	72.41	53	108.8	5	4.186
cod-rna	96	7.178		/	/	/	55	134.6	7	8.154
connect-4	103	11.07					154	186.5	10	4.220
skin nonskin	43	91.39				/	65	1490	3	40.05
YearPrediction	37	236.5		/		/	94	2479	2	116.1

Table 2: Comparison of average number of iterations and running time (seconds).