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CG with Preconditi

Abstract Theoretical Analysis

Graph-based semi-supervised learning is one of
the most popular and successful semi-supervised
learning approaches. Unfortunately, it suffers
from high time and space complexity, at least
quadratic with the number of training samples.
In this paper, we propose an eflicient graph-
based semi-supervised algorithm with a sound
theoretical guarantee. The proposed method
combines Nystrom subsampling and precondi-
tioned conjugate gradient descent, substantially
improving computational efficiency and reduc-
Ing memory requirements. IExtensive empiri- P=-K” K . +\K.. -
cal results reveal that our method achieves the i S
state-of-the-art performance in a short time even

Theorem 1 (Simple version). Under common
assumptions and

s > O(v/n)

then the following excess risk bound holds with
high probability,

Ho=z — P 'Ha=P 'z

The number of iterations for preconditioning and t > O(logm)

methods depends on the condition number
cond(P~1H), thus the preconditioner needs to
be approximate to H. To obtain a smaller con-
dition number but also avoid ineflicient compu-
tation, we define two preconditioners:

(1) m < v/n

E(f3y) — E(fu) < O

Bl

Technical challenges:
A n
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(2)

e Multi-penalty regularization. [1

C e . 2 I ] for N Om. |2
with limited computing resources. (2) m>/n * Integral operator for Nystrom. |2
1. Core Idea : LapRLS + Nystrom + PCG. b Mo \ e Convergence of PCG. [3]
— ? sstXss + AKSS | KssLssKss- (3) |
LapRLS Time: 0(n?) Space: 0(n?) The complexity:
To accelerate computation, Ha is decomposed | ,
Nystrom into a series of matrix-vector multiplications e Space complexity: O(s”) = O(n)
e Time complexity: O(nst+s°t) = O(ny/n).
Nystrom Time: 0(n?) Space: 0(n) (Kims@) + MaKsso + MK (L(Kpsa).  (4) P v: O ) ( )
Solution Estimators Time Space
i RLS-Direct O(m?) O(m?)
Alg()rlthm LapRLS-Direct | O(n?) O(n?)
Final LapRLS-CG O(n?-°) O(n?)
_— 5 . S 5 ,
MR Time: O(n'?) Space: O(n) Algorithm 1 Nystrém LapRLS with PCG LapRLS POL | Oln) { Otn)
Nystrém-PCG) Nystr?m—Dlrect O(n1)75 O(n)
2. Contributions Ny NyStr?m'CG O(”1'5 ) | On)
Require: m labeled samples {(x;,y;)}:" Nystrom-PCG | O(n_?) | O(n)

’1::]_7 n —

(1) Scalable Algorithm with O(n) space and
O(n'®) time.

(2) Theoretical Guarantee: Excess risk bounds
with convergence rate O(\/%)

m unlabeled samples {x;}"_, ;. Parame-
ters: Aa, Az, kernel method K and subsam-
pling size s.

Ensure: coefficients o

1: Construct Laplacian graph matrix L.

2: Select s Nystrom centers with uniform sam-
pling from training set {Xi,---,Xs} €
{x1, " ,Xn}.

3: Calculate inverse of the preconditioner P!
(2) or (3).

4: Use any PCG solver to solve P7'Ha =
P!z with calculating Ha by Eq. (4) and
performing matrix multiplication in blocks.
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o= (JK+ I+ MLK) 'y, (1)
where K;;, = K(x;,x,) is n x n kernel matrix
on train data, J = diag(1,---,1,0,---,0) with
the first m diagonal entries as 1 and the rest 0,
and vy, = [y1,y2, - ,Ym,0,---,0]1 with corre-

Experimental Results

sponding m labels and the rest filled by 0. dataset sample size RLS-CG LapRLS-CG  LapRLS-PCG Nystrom-CG Nystrom-PCG
But LapRLS is not feasible to handle with large space ga 3107 | 1.2514+0.004 1.2104+0.004 1.2104+0.004 1.2104+0.004 1.210+0.004
scale training data, due to its scalabﬂity issues: phishing 11055 | 0.426=0.049 0.29410.005 0.273=0.007 0.2952=0.005 0.275x0.008
. o a8a 22696 | 0.7024-0.002 0.6644-0.002 0.664-+-0.002 0.664+0.002  0.66440.002

(1) Space complexity: O(n”). wTa 24692 | 0.2914+0.002 0.283+0.002 0.2834+0.002  0.284+0.002  0.284+0.002
(2) Time complexity: O(n?). a9a 32561 | 0.69840.005 0.664+0.000 0.664+0.002 0.664+0.000 0.664+0.002
1jcnnl 49990 | 0.434=0.005 0.389x0.002 0.389:0.002 0.393=0.001 0.463=0.001

cod-rna 59535 | 0.68640.002 / / 0.614+0.001 0.614+0.001

1. apRLS with Nystr connect-4 67757 | 0.781+0.015 / /  0.739+0.002 0.739-+0.002
skin nonskin 245057 | 3.11940.023 / /  2.620+0.043 2.620+0.043

Consider a smaller hypothesis space H YearPrediction 463715 | 0.198+0.001 / / 0.187+0.001 0.187+0.001

Table 1: Comparison of average root mean square error between Nystrém-PCG and RLS-CG, LapRLS-CG,
LapRLS-PCG, Nystrom LapRLS-CG. We bold the best results and underline the results of the other methods
which are not significantly worse than the best one.

HS - {f - H‘f — Z&iK(Xiv ')7 O C Rs}a
1=1

where s <n and x5 = (X1, ,Xs) are Nystrom RLS-CG | LapRLS-CG | LapRLS-PCG | Nystrom-CG | Nystrém-PCG
centers selected by uniform subsampling from iter  time | iter time | iter time | iter time | iter time
the training set. The solution of LapRLS (1) space_ ga 11  0.004 23 1.220 5 0.569 23 0.113 2 0.016
over the space H. is in the form: phishing 74 0.031 | 300 24.20 | 56 8.210 | 300  2.470 3 0.045
s ' a8a 100 0.068 | 50  189.1 3 20.98 | 50  44.71 1 4.370

- - R wT7a 13 0.072 | 32  143.2 2 9.683 | 213  107.7 1 2.252

o= (K,  Kns + K + K, LK, ) K.y, a9a 300 0529 | 64 1699 3 3030 | 65  70.40 1  4.034
ﬁﬁ—’ T ijcnnl 242 8.204 | 57 2154 9 72.41 | 53  108.8 5 4.186
cod-rna 96  7.178 / / / / 55 134.6 7 8.154

where H' denotes the Moore-Penorse pseudoin- Sﬁ?nnfiiskm 122 éigg ? ? ? ? 1(5;51 118 fgg 13 162.(2)(5)
verse, (Ks)i; = K(xi,x;) with ¢ € {1,--- ,m} YearPrediction | 37  236.5 / / / /| 94 2479 2 116.1

and j € {17 78}7 (KSS)kj — K(ikaij) with
k,jed{l,---,standy = [y, - ,ym|l € R™.

Table 2: Comparison of average number of iterations and running time (seconds).



