

Multi-Class Learning: From Theory to Algorithm

Jian Li^{1,2}, Yong Liu^{1,*}, Rong Yin^{1,2}, Hua Zhang¹, Lizhong Ding⁵, Weiping Wang^{1,3,4}

¹Institute of Information Engineering, Chinese Academy of Sciences
 ²School of Cyber Security, University of Chinese Academy of Sciences
 ³National Engineering Research Center for Information Security
 ⁴National Engineering Laboratory for Information Security Technology
 ⁵Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE

32nd Conference on Neural Information Processing Systems (NIPS 2018)

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning
- 5 Experiments

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning
- 5 Experiments
- 6 Conclusion

Introduction

- Statistical learning of multi-class classification is a crucial problem in machine learning.
- Existing generalization bounds for multi-class classification:

Methods	Convergence rate
VC-dimension	$\mathcal{O}\left(\sqrt{V}\log K/\sqrt{n}\right)$
Natarajan dimension	$\mathcal{O}(d_{Nat}/n)$
Covering Number	$\mathcal{O}(1/\sqrt{n})$
Rademacher Complexity	$\mathcal{O}(\log^2 K/\sqrt{n})$
Stability	$\mathcal{O}(1/\sqrt{n})$
PAC-Bayesian	$\mathcal{O}ig(\sqrt{\hat{L}(h_{\gamma})/n}ig)$

• Contributions:

- A new local Rademacher complexity based bound with fast convergence rate $\mathcal{O}((\log K)^{2+1/\log K}/n)$ for multi-class classification is establish.
- Two novel multi-class multiple kernel learning algorithms are proposed with statistical guarantees: a) Conv-MKL. b) SMSD-MKL.

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning
- 5 Experiments
- 6 Conclusion

Multi-class classification setting
 Let X be the input space and Y = {1, 2, ..., K} the output space.
 Based on training examples S drawn i.i.d. from a fixed, but unknown
 probability distribution on Z = X × Y, we wish to learn a scoring rule
 h mapping from Z to R to predict

$$\mathbf{x} \to \operatorname*{arg\,max}_{y \in \mathcal{Y}} h(\mathbf{x}, y).$$

For any $h\in \mathcal{H},$ the margin of a labeled example $z=(\mathbf{x},y)$ is defined as

$$\rho_h(z) := h(\mathbf{x}, y) - \max_{y' \neq y} h(\mathbf{x}, y').$$

The h misclassifies the labeled example $z = (\mathbf{x}, y)$ if $\rho_h(z) \leq 0$.

Notations and Preliminaries II

• Hypothesis Space

Let $\kappa : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a Mercer kernel with ϕ being the associated feature map, i.e., $\kappa(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle$. The ℓ_p -norm hypothesis space associated with the kernel κ is denoted by:

$$\mathcal{H}_{p,\kappa} = \Big\{ h_{\mathbf{w}} = (\langle \mathbf{w}_1, \phi(\mathbf{x}) \rangle, \dots, \langle \mathbf{w}_K, \phi(\mathbf{x}) \rangle) = \|\mathbf{w}\|_{2,p} \le 1, 1 \le p \le 2 \Big\},$$

where $\mathbf{w} = (\mathbf{w}_1, \dots, \mathbf{w}_K)$ and $\|\mathbf{w}\|_{2,p} = \left[\sum_{i=1}^K \|\mathbf{w}_i\|_2^p\right]^{\frac{1}{p}}$ is the $\ell_{2,p}$ -norm. For $p \ge 1$, the dual exponent q satisfies 1/p + 1/q = 1. The space of loss function associated with $\mathcal{H}_{p,\kappa}$ is denoted by

$$\mathcal{L} = \{\ell_h := \ell(\rho_h(z)) : h \in \mathcal{H}_{p,\kappa}\}.$$

Notations and Preliminaries III

• Local Rademacher Complexity

Definition (Local Rademacher Complexity)

For any r>0, the local Rademacher complexity of ${\cal L}$ is defined as

$$\mathcal{R}(\mathcal{L}^r) := \mathcal{R}\left\{a\ell_h \middle| a \in [0,1], \ell_h \in \mathcal{L}, L[(a\ell_h)^2] \le r\right\},\$$

where $L(\ell_h^2) = \mathbb{E}_{\mu} \left[\ell^2(\rho_h(z)) \right]$.

The key idea to obtain sharper generalization error bound is to choose a much smaller class $\mathcal{L}^r \subseteq \mathcal{L}$ with as small a variance as possible, while requiring that the solution is still in $\{h|h \in \mathcal{H}_{p,\kappa}, \ell_h \in \mathcal{L}^r\}$.

Assumptions

•
$$\vartheta = \sup_{\mathbf{x} \in \mathcal{X}} \kappa(\mathbf{x}, \mathbf{x}) < \infty$$

• $\ell_h: \mathcal{Z} \to [0,d]$, d > 0 is a constant.

- 2 Notations and Preliminaries
- Sharper Generalization Bounds
 - 4 Multi-Class Multiple Kernel Learning
 - 5 Experiments
 - 6 Conclusion

Local Rademacher Complexity

The estimate the local Rademacher complexity of multi-class classification is given as follows.

Theorem

With probability at least $1 - \delta$,

$$\mathcal{R}(\mathcal{L}^r) \le \frac{c_{d,\vartheta}\xi(K)\sqrt{\zeta r}\log^{\frac{3}{2}}(n)}{\sqrt{n}} + \frac{4\log(1/\delta)}{n},$$

where

$$\xi(K) = \begin{cases} \sqrt{e} (4\log K)^{1 + \frac{1}{2\log K}}, & \text{if } q \ge 2\log K \\ (2q)^{1 + \frac{1}{q}} K^{\frac{1}{q}}, & \text{otherwise,} \end{cases}$$

 $c_{d,\vartheta}$ is a constant depends on d and ϑ .

Jian Li, Yong Liu* (IIE, CAS) Multi-Class Learning: From Theory to Algorithm

< 🗇 🕨

→ ∃ →

A Sharper Generalization Bound I

A sharper bound for multi-class classification based on local Rademacher complexity is derived.

Theorem

 $\forall h \in \mathcal{H}_{p,\kappa} \text{ and } \forall k > \max(1, \frac{\sqrt{2}}{2d})$, with probability at least $1 - \delta$, we have

$$L(h) \le \max\left\{\frac{k}{k-1}\hat{L}(\ell_h), \hat{L}(\ell_h) + \frac{c_{d,\vartheta,\zeta,k}\xi^2(K)\log^3 n}{n} + \frac{c_\delta}{n}\right\},$$

where

$$\xi(K) = \begin{cases} \sqrt{e} (4\log K)^{1 + \frac{1}{2\log K}}, & \text{if } q \ge 2\log K \\ (2q)^{1 + \frac{1}{q}} K^{\frac{1}{q}}, & \text{otherwise,} \end{cases}$$

constant $c_{d,\vartheta}$ depends on d, ϑ, ζ, k , and constant c_{δ} depends on δ .

A (10) F (10)

The order of the generalization bound in above Theorem is $\mathcal{O}(\xi^2(K)/n)$. From the definition of $\xi(K)$, we can obtain that

$$\mathcal{O}\left(\frac{\xi^2(K)}{n}\right) = \begin{cases} \mathcal{O}\left(\frac{(\log K)^{2+1/\log K}}{n}\right), & \text{if } q \ge 2\log K, \\\\ \mathcal{O}\left(\frac{K^{2/q}}{n}\right), & \text{if } 2 \le q < 2\log K. \end{cases}$$

Note that our bounds is linear dependence on the reciprocal of sample size n, while for the existing data-dependent bounds are all radical dependence.

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning
 - 5 Experiments
 - 6 Conclusion

Consider multiple kernel leanring, $\kappa_{\mu} = \sum_{m=1}^{M} \mu_m \kappa_m$. For multiple kernel learning, we have M feature mappings ϕ_m , $m = 1, \ldots, M$ and $\kappa_m(\mathbf{x}, \mathbf{x}') = \langle \phi_m(\mathbf{x}), \phi_m(\mathbf{x}') \rangle$, where $m = 1, \ldots, M$. Let $\phi_{\mu}(\mathbf{x}) = [\phi_1(\mathbf{x}), \ldots, \phi_M(\mathbf{x})]$. Using above Theorem, we confine $q \geq 2 \log K$, thus $1 . The <math>\ell_p$ hypothesis space of multiple kernels can be written as:

$$\mathcal{H}_{mkl} = \left\{ h_{\mathbf{w},\kappa_{\boldsymbol{\mu}}} = \left(\langle \mathbf{w}_{1}, \phi_{\boldsymbol{\mu}}(\mathbf{x}) \rangle, \dots, \langle \mathbf{w}_{K}, \phi_{\boldsymbol{\mu}}(\mathbf{x}) \rangle \right), \\ \|\mathbf{w}\|_{2,p} \le 1, 1$$

According to theoretical analysis, we add local Rademacher complexity (the tail sum of the eigenvalues of the kernel) to restrict \mathcal{H}_{mkl} :

$$\mathcal{H}_1 = \Big\{ h_{\mathbf{w},\kappa_{\boldsymbol{\mu}}} \in \mathcal{H}_{mkl} : \sum_{j>\zeta} \lambda_j(\mathbf{K}_{\boldsymbol{\mu}}) \le 1 \Big\},\$$

where $\lambda_j(\mathbf{K}_{\mu})$ is the *j*-th eigenvalues of \mathbf{K}_{μ} and ζ is free parameter removing the ζ largest eigenvalues to control the tail sum. One can see that \mathcal{H}_1 is not convex, we consider the use of the convex \mathcal{H}_2 :

$$\mathcal{H}_2 = \Big\{ h_{\mathbf{w},\kappa_{\boldsymbol{\mu}}} \in \mathcal{H}_{mkl} : \sum_{m=1}^M \mu_m \sum_{j>\zeta} \lambda_j(\mathbf{K}_m) \le 1 \Big\}.$$

Using normalized kernels
$$\tilde{\kappa}_m = \left(\sum_{j>\zeta} \lambda_j(\mathbf{K}_m)\right)^{-1} \kappa_m$$
 and
 $\tilde{\kappa}_{\mu} = \sum_{m=1}^{M} \mu_m \tilde{\kappa}_m$, we can simply rewrite \mathcal{H}_2 as
 $\left\{h_{\mathbf{w},\tilde{\kappa}_{\mu}} = (\langle \mathbf{w}_1, \tilde{\phi}_{\mu}(\mathbf{x}) \rangle, \dots, \langle \mathbf{w}_K, \tilde{\phi}_{\mu}(\mathbf{x}) \rangle), \\ \|\mathbf{w}\|_{2,p} \le 1, 1$

With precomputed kernel matrices regularized by local Rademacher complexity, the method gets solution by any ℓ_p -norm MC-MKL solvers.

< ∃ ►

Algorithm 1 Conv-MKL

Input: precomputed kernel matrices $\mathbf{K}_1, \dots, \mathbf{K}_M$ and ζ for i = 1 to M do Compute tail sum: $r_m = \sum_{j>\zeta} \lambda_j (\mathbf{K}_m)$ Normalize precomputed kernel matrix: $\widetilde{\mathbf{K}}_m = \mathbf{K}_m/r_m$ end for Use $\widetilde{\mathbf{K}}_m$, $m = 1, \dots, M$, as the basic kernels in any ℓ_p -norm MKL solver

- **4 ∃ ≻** 4

SMSD-MKL I

Considering a more challenging case, we perform penalized ERM over the class \mathcal{H}_1 , aiming to solve a convex optimization problem with an additional term representing local Rademacher complexity :

$$\min_{\mathbf{w},\boldsymbol{\mu}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}, \phi_{\boldsymbol{\mu}}(\mathbf{x}_{i}), y_{i})}_{C(\mathbf{w})} + \underbrace{\frac{\alpha}{2} \|\mathbf{w}\|_{2,p}^{2} + \beta \sum_{m=1}^{M} \mu_{m} r_{m}}_{\Omega(\mathbf{w})},$$

where
$$\ell(\mathbf{w}, \phi_{\mu}(\mathbf{x}_{i}), y_{i}) = \left| 1 - \left(\langle \mathbf{w}_{y_{i}}, \phi_{\mu}(\mathbf{x}_{i}) \rangle - \max_{y \neq y_{i}} \langle \mathbf{w}_{y}, \phi_{\mu}(\mathbf{x}_{i}) \rangle \right) \right|_{+}$$
 and $r_{m} = \sum_{j > \zeta} \lambda_{j}(\mathbf{K}_{m})$ is the tail sum of the *m*-th kernel matrix, $m = 1$ M

Based on widely used stochastic mirror descent framework, we design a stochastic mirror and sub-gradient descent algorithm with updating dual weights, to solve optimization objective.

Jian Li, Yong Liu* (IIE, CAS) Multi-Class Learning: From Theory to Algorithm

SMSD-MKL II

Actually, the algorithm updates real numbers $\|\theta_m^{t+1}\|$, ν_m^{t+1} and μ_m^{t+1} in scalar products instead of high-dimensional variables \mathbf{w}^{t+1} and $\boldsymbol{\theta}_m^{t+1}$.

Algorithm 2 SMSD-MKL

Input:
$$\alpha, \beta, r, T$$

Initialize: $\mathbf{w}^1 = \mathbf{0}, \boldsymbol{\theta}^1 = \mathbf{0}, \boldsymbol{\mu}^1 = \mathbf{1}, q = 2 \log K$
for $t = 1$ to T do
Sample at random (\mathbf{x}^t, y^t)
Compute the dual weight: $\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \partial C(\mathbf{w}^t)$
 $\nu_m^{t+1} = \|\boldsymbol{\theta}_m^{t+1}\| - t\beta r_m, \forall m = 1, \dots, M$
 $\mu_m^{t+1} = \frac{\operatorname{sgn}(\nu_m^{t+1})|\nu_m^{t+1}|_q^{q-2}}{\alpha \|\boldsymbol{\theta}_m^{t+1}\| \|\nu_m^{t+1}\|_q^{q-2}}, \forall m = 1, \dots, M$
end for

By training above algorithm, we can get

(1) Decision Function $\mathbf{x} \to \arg \max_{y \in \mathcal{Y}} h(\mathbf{x}, y) = \arg \max_{y \in \mathcal{Y}} \mathbf{w}_y \phi_{\boldsymbol{\mu}}(\mathbf{x})$ (2) MKL coefficients μ for $\kappa_{\mu} = \sum_{m=1}^{M} \mu_m \kappa_m$ Jian Li, Yong Liu* (IIE, CAS)

Introduction

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning

5 Experiments

6 Conclusion

Experiments

We compare our proposed Conv-MKL (Algorithm 1) and SMSD-MKL (Algorithm 2) with 7 popular multi-class classification methods.

Table 1: Comparison of average test accuracies of our Conv-MKL and SMSD-MKL with the others. We bold the numbers of the best method, and underline the numbers of the other methods which are not significantly worse than the best one.

	Conv-MKL	SMSD-MKL	LMC	One vs. One	One vs. Rest	GMNP	ℓ_1 MC-MKL	$\ell_2 \text{ MC-MKL}$	UFO-MKL
plant	77.14 ± 2.25	78.01±2.17	70.12 ± 2.96	75.83 ± 2.69	75.17 ± 2.68	75.42 ± 3.64	77.60 ± 2.63	75.49 ± 2.48	76.77±2.42
psortPos	74.41 ± 3.35	76.23 ± 3.39	63.85 ± 3.94	$73.33 {\pm} 4.21$	71.70 ± 4.89	$73.55 {\pm} 4.22$	71.87 ± 4.87	70.70 ± 4.89	$74.56 {\pm} 4.04$
psortNeg	$74.07 {\pm} 2.16$	$74.66 {\pm} 1.90$	$57.85 {\pm} 2.49$	73.74 ± 2.87	71.94 ± 2.50	$74.27 {\pm} 2.51$	$72.83 {\pm} 2.20$	72.42 ± 2.65	$73.80{\pm}2.26$
nonpl	$79.15 {\pm} 1.51$	78.69 ± 1.58	$75.16 {\pm} 1.48$	77.78 ± 1.52	77.49 ± 1.53	78.35 ± 1.46	77.89 ± 1.79	77.95 ± 1.64	$78.07 {\pm} 1.56$
sector	$92.83 {\pm} 2.62$	$93.39 {\pm} 0.70$	$93.16 {\pm} 0.66$	90.61 ± 0.69	$91.34 {\pm} 0.61$	\	\	92.15 ± 2.57	92.60 ± 0.47
segment	96.79 ± 0.91	$97.62 {\pm} 0.83$	95.07 ± 1.11	$97.08 {\pm} 0.61$	97.02 ± 0.80	$96.87{\pm}0.80$	$96.98 {\pm} 0.64$	97.58 ± 0.68	$97.20 {\pm} 0.82$
vehicle	$79.35 {\pm} 2.27$	$77.28 {\pm} 2.78$	75.61 ± 3.56	78.72 ± 1.92	79.11 ± 1.94	$81.57 {\pm} 2.24$	$74.96 {\pm} 2.93$	76.27±3.15	$76.92{\pm}2.83$
vowel	$98.82 {\pm} 1.19$	$98.83 {\pm} 5.57$	$62.32 {\pm} 4.97$	98.12 ± 1.76	98.22 ± 1.83	97.04 ± 1.85	98.27 ± 1.22	97.86 ± 1.75	$98.22 {\pm} 1.62$
wine	$99.63{\pm}0.96$	$99.63{\pm}0.96$	97.87 ± 2.80	97.24 ± 3.05	98.14 ± 3.04	$97.69 {\pm} 2.43$	98.61 ± 1.75	98.52 ± 1.89	$99.44 {\pm} 1.13$
dna	$96.08 {\pm} 0.83$	$96.30 {\pm} 0.79$	92.02 ± 1.50	95.89 ± 0.56	95.61 ± 0.73	$94.60 {\pm} 0.94$	96.27 ± 0.68	95.06 ± 0.92	$95.84 {\pm} 0.61$
glass	$75.19 {\pm} 5.05$	73.72 ± 5.80	$63.95 {\pm} 6.04$	$71.98 {\pm} 5.75$	70.00 ± 5.75	71.24 ± 8.14	69.07±8.08	74.03 ± 6.41	$72.46 {\pm} 6.12$
iris	$96.67 {\pm} 2.94$	$97.00 {\pm} 2.63$	88.00 ± 7.82	95.93 ± 3.25	95.87 ± 3.20	$95.40 {\pm} 7.34$	$95.40 {\pm} 6.46$	94.00±7.82	$95.93 {\pm} 2.88$
svmguide2	82.69 ± 5.65	85.17 ± 3.83	81.10 ± 4.15	84.79 ± 3.45	84.27 ± 3.03	81.77 ± 3.45	$83.16 {\pm} 3.63$	83.84 ± 4.21	$82.91 {\pm} 3.09$
satimage	$91.64 {\pm} 0.88$	$91.78 {\pm} 0.82$	84.95 ± 1.15	$\overline{90.67 \pm 0.91}$	$\overline{89.29{\pm}0.96}$	$89.97 {\pm} 0.81$	$\underline{91.86{\pm}0.62}$	90.43±1.27	$91.92{\pm}0.83$

- 2 Notations and Preliminaries
- 3 Sharper Generalization Bounds
- 4 Multi-Class Multiple Kernel Learning
- 5 Experiments

• A new local Rademacher complexity based bound with fast convergence rate for multi-class classification is establish. Convergence rate is improved from sub-linear to linear

$$\mathcal{O}(\frac{K^2}{\sqrt{n}}) \quad \Rightarrow \quad \mathcal{O}(\frac{(\log K)^{2+1/\log K}}{n}).$$

• Two novel multi-class classification algorithms are proposed with statistical guarantees: a) Conv-MKL. b) SMSD-MKL.