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Introduction

Statistical learning of multi-class classification is a crucial problem in
machine learning.

Existing generalization bounds for multi-class classification:

Methods Convergence rate

VC-dimension O
(√
V logK/

√
n
)

Natarajan dimension O
(
dNat/n

)
Covering Number O

(
1/
√
n
)

Rademacher Complexity O
(
log2K/

√
n
)

Stability O
(
1/
√
n
)

PAC-Bayesian O
(√

L̂(hγ)/n
)

Contributions:
A new local Rademacher complexity based bound with fast convergence
rate O

(
(logK)2+1/logK/n

)
for multi-class classification is establish.

Two novel multi-class multiple kernel learning algorithms are proposed
with statistical guarantees: a) Conv-MKL. b) SMSD-MKL.
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Notations and Preliminaries I

Multi-class classification setting
Let X be the input space and Y = {1, 2, . . . ,K} the output space.
Based on training examples S drawn i.i.d. from a fixed, but unknown
probability distribution on Z = X ×Y, we wish to learn a scoring rule
h mapping from Z to R to predict

x→ argmax
y∈Y

h(x, y).

For any h ∈ H, the margin of a labeled example z = (x, y) is defined
as

ρh(z) := h(x, y)−max
y′ 6=y

h(x, y′).

The h misclassifies the labeled example z = (x, y) if ρh(z) ≤ 0.
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Notations and Preliminaries II

Hypothesis Space
Let κ : X × X → R be a Mercer kernel with φ being the associated
feature map, i.e., κ(x,x′) = 〈φ(x), φ(x′)〉. The `p-norm hypothesis
space associated with the kernel κ is denoted by:

Hp,κ =
{
hw =(〈w1, φ(x)〉, . . . , 〈wK , φ(x)〉) :

‖w‖2,p ≤ 1, 1 ≤ p ≤ 2
}
,

where w = (w1, . . . ,wK) and ‖w‖2,p =
[∑K

i=1 ‖wi‖p2
] 1

p
is the

`2,p-norm. For p ≥ 1, the dual exponent q satisfies 1/p+ 1/q = 1.
The space of loss function associated with Hp,κ is denoted by

L = {`h := `(ρh(z)) : h ∈ Hp,κ} .
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Notations and Preliminaries III

Local Rademacher Complexity

Definition (Local Rademacher Complexity)

For any r > 0, the local Rademacher complexity of L is defined as

R(Lr) := R
{
a`h

∣∣∣a ∈ [0, 1], `h ∈ L, L[(a`h)2] ≤ r
}
,

where L(`2h) = Eµ
[
`2(ρh(z))

]
.

The key idea to obtain sharper generalization error bound is to choose
a much smaller class Lr ⊆ L with as small a variance as possible,
while requiring that the solution is still in {h|h ∈ Hp,κ, `h ∈ Lr}.
Assumptions

ϑ = supx∈X κ(x,x) <∞
`h : Z → [0, d], d > 0 is a constant.
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Local Rademacher Complexity

The estimate the local Rademacher complexity of multi-class classification
is given as follows.

Theorem

With probability at least 1− δ,

R(Lr) ≤
cd,ϑξ(K)

√
ζr log

3
2 (n)√

n
+

4 log(1/δ)

n
,

where

ξ(K) =


√
e(4 logK)

1+ 1
2 logK , if q ≥ 2 logK,

(2q)
1+ 1

qK
1
q , otherwise,

cd,ϑ is a constant depends on d and ϑ.
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A Sharper Generalization Bound I

A sharper bound for multi-class classification based on local Rademacher
complexity is derived.

Theorem

∀h ∈ Hp,κ and ∀k > max(1,
√

2
2d ), with probability at least 1− δ, we have

L(h) ≤ max

{
k

k − 1
L̂(`h), L̂(`h) +

cd,ϑ,ζ,kξ
2(K) log3 n

n
+
cδ
n

}
,

where

ξ(K) =


√
e(4 logK)

1+ 1
2 logK , if q ≥ 2 logK,

(2q)
1+ 1

qK
1
q , otherwise,

constant cd,ϑ depends on d, ϑ, ζ, k, and constant cδ depends on δ.
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A Sharper Generalization Bound II

The order of the generalization bound in above Theorem is O
(
ξ2(K)/n

)
.

From the definition of ξ(K), we can obtain that

O
(
ξ2(K)

n

)
=


O

(
(logK)2+1/logK

n

)
, if q ≥ 2 logK,

O

(
K2/q

n

)
, if 2 ≤ q < 2 logK.

Note that our bounds is linear dependence on the reciprocal of sample size
n, while for the existing data-dependent bounds are all radical dependence.
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MKL

Consider multiple kernel leanring, κµ =
∑M

m=1 µmκm. For multiple kernel
learning, we have M feature mappings φm, m = 1, . . . ,M and
κm(x,x

′) = 〈φm(x), φm(x′)〉, where m = 1, . . . ,M .
Let φµ(x) = [φ1(x), . . . , φM (x)]. Using above Theorem, we confine

q ≥ 2 logK, thus 1 < p ≤ 2 logK
2 logK−1 . The `p hypothesis space of multiple

kernels can be written as:

Hmkl =
{
hw,κµ =(〈w1, φµ(x)〉, . . . , 〈wK , φµ(x)〉) ,

‖w‖2,p ≤ 1, 1 < p ≤ 2 logK

2 logK − 1

}
.
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Cov-MKL I

According to theoretical analysis, we add local Rademacher complexity
(the tail sum of the eigenvalues of the kernel) to restrict Hmkl:

H1 =
{
hw,κµ ∈ Hmkl :

∑
j>ζ

λj(Kµ) ≤ 1
}
,

where λj(Kµ) is the j-th eigenvalues of Kµ and ζ is free parameter
removing the ζ largest eigenvalues to control the tail sum.
One can see that H1 is not convex, we consider the use of the convex H2:

H2 =
{
hw,κµ ∈ Hmkl :

M∑
m=1

µm
∑
j>ζ

λj(Km) ≤ 1
}
.
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Cov-MKL II

Using normalized kernels κ̃m =
(∑

j>ζ λj(Km)
)−1

κm and

κ̃µ =
∑M

m=1 µmκ̃m, we can simply rewrite H2 as{
hw,κ̃µ =(〈w1, φ̃µ(x)〉, . . . , 〈wK , φ̃µ(x)〉),

‖w‖2,p ≤ 1, 1 < p ≤ 2 logK

2 logK − 1
,µ � 0, ‖µ‖1 ≤ 1

}
,

With precomputed kernel matrices regularized by local Rademacher
complexity, the method gets solution by any `p-norm MC-MKL solvers.
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Cov-MKL III

Algorithm 1 Conv-MKL

Input: precomputed kernel matrices K1, . . . ,KM and ζ
for i = 1 to M do

Compute tail sum: rm =
∑

j>ζ λj (Km)

Normalize precomputed kernel matrix: K̃m = Km/rm
end for
Use K̃m, m = 1, . . . ,M , as the basic kernels in any `p-norm MKL solver
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SMSD-MKL I

Considering a more challenging case, we perform penalized ERM over the
class H1, aiming to solve a convex optimization problem with an
additional term representing local Rademacher complexity :

min
w,µ

1

n

n∑
i=1

`(w, φµ(xi), yi)︸ ︷︷ ︸
C(w)

+
α

2
‖w‖22,p + β

M∑
m=1

µmrm︸ ︷︷ ︸
Ω(w)

,

where `(w, φµ(xi), yi) =

∣∣∣∣1− (〈wyi , φµ(xi)〉 −max
y 6=yi
〈wy, φµ(xi)〉

)∣∣∣∣
+

and

rm =
∑

j>ζ λj(Km) is the tail sum of the m-th kernel matrix,
m = 1, . . . ,M .
Based on widely used stochastic mirror descent framework, we design a
stochastic mirror and sub-gradient descent algorithm with updating dual
weights, to solve optimization objective.
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SMSD-MKL II

Actually, the algorithm updates real numbers ‖θt+1
m ‖, νt+1

m and µt+1
m in

scalar products instead of high-dimensional variables wt+1 and θt+1
m .

Algorithm 2 SMSD-MKL

Input: α, β, r, T
Initialize: w1 = 0, θθθ1 = 0,µ1 = 1, q = 2 logK
for t = 1 to T do

Sample at random (xt, yt)
Compute the dual weight: θθθt+1 = θθθt − ∂C(wt)
νt+1
m = ‖θt+1

m ‖ − tβrm, ∀m = 1, . . . ,M

µt+1
m = sgn(νt+1

m )|νt+1
m |q−1

α‖θt+1
m ‖|νt+1

m |q−2
q

, ∀m = 1, . . . ,M

end for

By training above algorithm, we can get

(1) Decision Function x→ argmaxy∈Y h(x, y) = argmaxy∈Y wyφµ(x)

(2) MKL coefficients µ for κµ =
∑M

m=1 µmκm
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Experiments

We compare our proposed Conv-MKL (Algorithm 1) and SMSD-MKL

(Algorithm 2) with 7 popular multi-class classification methods.

Table 1: Comparison of average test accuracies of our Conv-MKL and SMSD-MKL

with the others. We bold the numbers of the best method, and underline the
numbers of the other methods which are not significantly worse than the best one.

Conv-MKL SMSD-MKL LMC One vs. One One vs. Rest GMNP `1 MC-MKL `2 MC-MKL UFO-MKL
plant 77.14±2.25 78.01±2.17 70.12±2.96 75.83±2.69 75.17±2.68 75.42±3.64 77.60±2.63 75.49±2.48 76.77±2.42
psortPos 74.41±3.35 76.23±3.39 63.85±3.94 73.33±4.21 71.70±4.89 73.55±4.22 71.87±4.87 70.70±4.89 74.56±4.04
psortNeg 74.07±2.16 74.66±1.90 57.85±2.49 73.74±2.87 71.94±2.50 74.27±2.51 72.83±2.20 72.42±2.65 73.80±2.26
nonpl 79.15±1.51 78.69±1.58 75.16±1.48 77.78±1.52 77.49±1.53 78.35±1.46 77.89±1.79 77.95±1.64 78.07±1.56
sector 92.83±2.62 93.39±0.70 93.16±0.66 90.61±0.69 91.34±0.61 \ \ 92.15±2.57 92.60±0.47
segment 96.79±0.91 97.62±0.83 95.07±1.11 97.08±0.61 97.02±0.80 96.87±0.80 96.98±0.64 97.58±0.68 97.20±0.82
vehicle 79.35±2.27 77.28±2.78 75.61±3.56 78.72±1.92 79.11±1.94 81.57±2.24 74.96±2.93 76.27±3.15 76.92±2.83
vowel 98.82±1.19 98.83±5.57 62.32±4.97 98.12±1.76 98.22±1.83 97.04±1.85 98.27±1.22 97.86±1.75 98.22±1.62
wine 99.63±0.96 99.63±0.96 97.87±2.80 97.24±3.05 98.14±3.04 97.69±2.43 98.61±1.75 98.52±1.89 99.44±1.13
dna 96.08±0.83 96.30±0.79 92.02±1.50 95.89±0.56 95.61±0.73 94.60±0.94 96.27±0.68 95.06±0.92 95.84±0.61
glass 75.19±5.05 73.72±5.80 63.95±6.04 71.98±5.75 70.00±5.75 71.24±8.14 69.07±8.08 74.03±6.41 72.46±6.12
iris 96.67±2.94 97.00±2.63 88.00±7.82 95.93±3.25 95.87±3.20 95.40±7.34 95.40±6.46 94.00±7.82 95.93±2.88
svmguide2 82.69±5.65 85.17±3.83 81.10±4.15 84.79±3.45 84.27±3.03 81.77±3.45 83.16±3.63 83.84±4.21 82.91±3.09
satimage 91.64±0.88 91.78±0.82 84.95±1.15 90.67±0.91 89.29±0.96 89.97±0.81 91.86±0.62 90.43±1.27 91.92±0.83

Jian Li, Yong Liu∗ (IIE, CAS) Multi-Class Learning: From Theory to Algorithm NIPS 2018 21 / 23



Content

1 Introduction

2 Notations and Preliminaries

3 Sharper Generalization Bounds

4 Multi-Class Multiple Kernel Learning

5 Experiments

6 Conclusion

Jian Li, Yong Liu∗ (IIE, CAS) Multi-Class Learning: From Theory to Algorithm NIPS 2018 22 / 23



Conclusion

A new local Rademacher complexity based bound with fast
convergence rate for multi-class classification is establish.
Convergence rate is improved from sub-linear to linear

O
(K2

√
n

)
⇒ O

((logK)2+1/logK

n

)
.

Two novel multi-class classification algorithms are proposed with
statistical guarantees: a) Conv-MKL. b) SMSD-MKL.
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